Mouse antithymocyte globulin (mATG) prevents, as well as reverses, type 1 diabetes in NOD mice, through mechanisms involving modulation of the immunoregulatory activities of T lymphocytes. Dendritic cells (DC) play a pivotal role in the generation of T cell responses, including those relevant to the autoreactive T cells enabling type 1 diabetes. As Abs against DC are likely generated during production of mATG, we examined the impact of this preparation on the phenotype and function of DC to elucidate novel mechanisms underlying its beneficial activities. In vivo, mATG treatment transiently induced the trafficking of mature CD8(-) predominant DC into the pancreatic lymph node of NOD mice. Splenic DC from mATG-treated mice also exhibited a more mature phenotype characterized by reduced CD8 expression and increased IL-10 production. The resultant DC possessed a potent capacity to induce Th2 responses when cultured ex vivo with diabetogenic CD4(+) T cells obtained from BDC2.5 TCR transgenic mice. Cotransfer of these Th2-deviated CD4(+) T cells with splenic cells from newly diabetic NOD mice into NOD.RAG(-/-) mice significantly delayed the onset of diabetes. These studies suggest the alteration of DC profile and function by mATG may skew the Th1/Th2 balance in vivo and through such actions, represent an additional novel mechanism by which this agent provides its beneficial activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770841PMC
http://dx.doi.org/10.4049/jimmunol.0713269DOI Listing

Publication Analysis

Top Keywords

nod mice
16
mouse antithymocyte
8
antithymocyte globulin
8
profile function
8
type diabetes
8
beneficial activities
8
cd4+ cells
8
mice
7
cells
5
rabbit polyclonal
4

Similar Publications

Acanthoside B attenuates NLRP3-mediated pyroptosis and ulcerative colitis through inhibition of tAGE/RAGE pathway.

Allergol Immunopathol (Madr)

January 2025

Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;

Acanthoside B (Aca.B), a principal bioactive compound extracted from , exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology.

View Article and Find Full Text PDF

The role of B cells in the pathogenesis of type 1 diabetes.

Front Immunol

January 2025

Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.

Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies.

View Article and Find Full Text PDF

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many malignant tumors. However, ICI-induced hyper-immune activation causes cardiotoxicity. Traditional treatments such as glucocorticoids and immunosuppressants have limited effectiveness and may even accelerate tumor growth.

View Article and Find Full Text PDF

β-Cell Deletion of Hypoxia-Inducible Factor 1α (HIF-1α) Increases Pancreatic β-Cell Susceptibility to Streptozotocin.

Int J Mol Sci

December 2024

Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.

Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!