The assembled structure of a complete tripartite bacterial multidrug efflux pump.

Proc Natl Acad Sci U S A

Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.

Published: April 2009

Bacteria like Escherichia coli and Pseudomonas aeruginosa expel drugs via tripartite multidrug efflux pumps spanning both inner and outer membranes and the intervening periplasm. In these pumps a periplasmic adaptor protein connects a substrate-binding inner membrane transporter to an outer membrane-anchored TolC-type exit duct. High-resolution structures of all 3 components are available, but a pump model has been precluded by the incomplete adaptor structure, because of the apparent disorder of its N and C termini. We reveal that the adaptor termini assemble a beta-roll structure forming the final domain adjacent to the inner membrane. The completed structure enabled in vivo cross-linking to map intermolecular contacts between the adaptor AcrA and the transporter AcrB, defining a periplasmic interface between several transporter subdomains and the contiguous beta-roll, beta-barrel, and lipoyl domains of the adaptor. With short and long cross-links expressed as distance restraints, the flexible linear topology of the adaptor allowed a multidomain docking approach to model the transporter-adaptor complex, revealing that the adaptor docks to a transporter region of comparative stability distinct from those key to the proposed rotatory pump mechanism, putative drug-binding pockets, and the binding site of inhibitory DARPins. Finally, we combined this docking with our previous resolution of the AcrA hairpin-TolC interaction to develop a model of the assembled tripartite complex, satisfying all of the experimentally-derived distance constraints. This AcrA(3)-AcrB(3)-TolC(3) model presents a 610,000-Da, 270-A-long efflux pump crossing the entire bacterial cell envelope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678420PMC
http://dx.doi.org/10.1073/pnas.0900693106DOI Listing

Publication Analysis

Top Keywords

multidrug efflux
8
efflux pump
8
inner membrane
8
adaptor
7
assembled structure
4
structure complete
4
complete tripartite
4
tripartite bacterial
4
bacterial multidrug
4
pump
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Toronto, Toronto, ON, Canada.

Background: Drug discovery efforts in neurological diseases, such as Alzheimer's disease (AD), have had particularly poor outcomes due to the lack of models that capture the cerebral vasculature. There is an unmet need to develop models that capture the physiological challenge of overcoming the blood-brain barrier (BBB) and impacts of blood flow-induced shear stress. In this work, we use a microfluidic platform to model the cerebral vasculature in familial AD (fAD) using patient-derived brain endothelial-like cells (BECs) and neurons.

View Article and Find Full Text PDF

The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.

View Article and Find Full Text PDF

A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited.

View Article and Find Full Text PDF

Carbapenemase producing (CPEs) represent a group of multidrug resistant pathogens for which few, if any, therapeutics options remain available. CPEs generally harbor plasmids that encode resistance to last resort carbapenems and many other antibiotics. We previously performed a high throughput screen to identify compounds that can disrupt the maintenance and replication of resistance conferring plasmids through use of a synthetic screening plasmid introduced into K-12 cells.

View Article and Find Full Text PDF

Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!