Unlabelled: This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine. Antigenic regions of RSV F, M2, and G genes were cloned into the human cytomegalovirus promoter-based constitutive expression vector, resulting in a DNA vaccine vector named DR-FM2G. This vector was used to formulate DNA-chitosan nanoparticles (DCNPs) using a complex coacervation process that yielded an encapsulation efficiency of 94.7%. The DCNP sizes ranged from 80 to 150 nm with uniform size distribution and spherical shape. DNA release was between 50% and 60% when DCNPs were incubated with similar gastrointestinal fluid (pH 2), whereas 21% to 25% of DNA was released from DCNPs in 30 minutes at pH 10. Differential scanning calorimetry showed DCNPs to be more stable than naked DNA or chitosan, offering protection from DNA degradation by nucleases. DCNPs were not toxic to cells when used at concentrations < or =400 microg/mL. Immunohistochemical and real-time polymerase chain reaction results showed a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA.

From The Clinical Editor: This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine, showing a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2009.02.004DOI Listing

Publication Analysis

Top Keywords

respiratory syncytial
12
syncytial virus
12
dna vaccine
8
vaccine vector
8
study evaluated
8
evaluated efficiency
8
efficiency chitosan-encapsulated
8
chitosan-encapsulated dna-based
8
dna-based respiratory
8
virus rsv
8

Similar Publications

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and children. mRNA vaccines based on the lipopolyplex (LPP) platform have been previously reported, but they remain unapplied in RSV vaccine development. In this study, we developed a novel LPP-delivered mRNA vaccine that expresses the respiratory syncytial virus prefusion protein (RSV pre-F) to evaluate its immunogenicity and protective effect in a mouse model.

View Article and Find Full Text PDF

Background/objectives: Respiratory syncytial virus (RSV) is a leading cause of respiratory infections in children. A novel RSVpreF vaccine for use among pregnant women for the prevention of RSV in infants is expected to be licensed in Mexico. Hence, the clinical and economic burden of RSV among infants in Mexico, with and without a year-round RSVpreF maternal vaccination program, was estimated.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) causes the most common type of severe lower respiratory tract infection worldwide, and the fusion (F) protein is a target for neutralizing antibodies and vaccine development. This study aimed to investigate the immunogenicity and efficacy of an mRNA-based RSV vaccine with an F protein sequence.

Methods: We designed an mRNA construct encoding a modified RSV F protein, which was further developed into an LNP-encapsulated mRNA vaccine (LVRNA007).

View Article and Find Full Text PDF

Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus.

Vaccines (Basel)

January 2025

Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.

The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.

View Article and Find Full Text PDF

Favorable Nonclinical Safety Profile of RSVpreF Bivalent Vaccine in Rats and Rabbits.

Vaccines (Basel)

December 2024

Drug Safety Research and Development, Pfizer Research & Development, Pearl River, NY 10965, USA.

: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed Abrysvo, an unadjuvanted bivalent recombinant protein subunit vaccine containing prefusion-stabilized fusion (F) proteins representing RSV A and RSV B subgroups (RSVpreF). It is the only RSV vaccine approved for both maternal immunization to protect infants and active immunization of older adults (≥60 years) and 18-59-year-old individuals with high-risk conditions for prevention of RSV disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!