Fronto-striatal circuitry interacts with the midbrain dopaminergic system to mediate the learning of stimulus-response associations, and these associations often guide everyday actions, but the precise role of these circuits in forming and consolidating rules remains uncertain. A means to examine basal ganglia circuit contributions to associative motor learning is to examine these process in a lesion model system, such as Parkinson's disease (PD), a basal ganglia disorder characterized by the loss of dopamine neurons. We used functional magnetic resonance imaging (MRI) to compare brain activation of PD patients with a group of healthy aged-match participants during a visual-motor associative learning task that entailed discovering and learning arbitrary associations between a set of six visual stimuli and corresponding spatial locations by moving a joystick-controlled cursor. We tested the hypothesis that PD would recruit more areas than age-matched controls during learning and also show increased activation in commonly activated regions, probably in the parietal and premotor cortices, and the cerebellum, perhaps as compensatory mechanisms for their disrupted fronto-striatal networks. PD had no effect in acquiring the associative relationships and learning-related activation in several key frontal cortical and subcortical structures. However, we found that PD modified activation in other areas, including those in the cerebellum and frontal, and parietal cortex, particularly during initial learning. These results may suggest that the basal ganglia circuits become active more so during the initial formation of rule-based behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065103PMC
http://dx.doi.org/10.1016/j.neuroimage.2009.03.050DOI Listing

Publication Analysis

Top Keywords

basal ganglia
16
learning
7
basal
4
ganglia role
4
role learning
4
learning rehearsing
4
rehearsing visual-motor
4
associations
4
visual-motor associations
4
associations fronto-striatal
4

Similar Publications

Evidence suggests that hippocampal (HPC) disruption following learning produces retrograde amnesia on a range of tasks. Many of these tasks do not require HPC function in the anterograde direction suggesting that, in the intact brain, the HPC is actively involved during all forms of learning. However, prior work has also demonstrated double dissociations of HPC and amygdala function, which is inconsistent with this view.

View Article and Find Full Text PDF

Infradian mood and sleep-wake rhythms with periods of 48 hours and beyond have been observed in patients with bipolar disorder (BD), which even persist in the absence of exogenous timing cues, indicating an endogenous origin. Here, we show that mice exposed to methamphetamine in drinking water develop infradian locomotor rhythms with periods of 48 hours and beyond which extend to sleep length and manic state-associated behaviors in support of a model for cycling in BD. The cycling capacity is abrogated upon genetic disruption of dopamine (DA) production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens projecting DA neurons.

View Article and Find Full Text PDF

Introduction: This extensive literature review investigates the relationship between post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD), focusing on the neurobiological changes associated with their co-occurrence. Given that these disorders frequently coexist, we analyze mechanisms through which alcohol serves as a coping strategy for PTSD symptoms, particularly highlighting the drinking-to-cope self-medication model, which suggests that alcohol use exacerbates PTSD symptoms and complicates recovery.

Methods: A systematic literature search was conducted across multiple databases, including PubMed and Google Scholar, to identify studies examining the intersection of the biopsychosocial model with PTSD, AUD, and associated neural alterations.

View Article and Find Full Text PDF

A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice.

Brain Behav

January 2025

Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.

Background: Pain is a prevalent comorbidity in numerous clinical conditions and causes suffering; however, the mechanism of pain is intricate, and the neural circuitry underlying pain in the brain remains incompletely elucidated. More research into the perception and modulation of pain within the central nervous system is essential. The nucleus accumbens (NAc) plays a pivotal role in the regulation of animal behavior, and extensive research has unequivocally demonstrated its significant involvement in the occurrence and development of pain.

View Article and Find Full Text PDF

We describe a set of monozygotic twins with GRIN2B-related neurodevelopmental disorder (GRIN2B-ND) who exhibited distinct clinical and imaging characteristics due to a de novo heterozygous pathogenic variant in the GRIN2B gene (c.2453T>C, p.Met818Thr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!