The gene for phosphatidylinositol-4-phosphate adaptor-2 (FAPP2) encodes a cytoplasmic lipid transferase with a plekstrin homology domain that has been implicated in vesicle maturation and transport from trans-Golgi to the plasma membrane. The introduction of ribozymes targeting the FAPP2 gene in colon carcinoma cells induced their apoptosis in the presence of Fas agonistic antibody. Furthermore, by quantitative PCR we showed that a siRNA specific to FAPP2, but not a randomized siRNA control, reduced FAPP2 gene expression in tumor cells. Transfection of FAPP2 siRNA into human tumor cells then incubated with FasL resulted in reduction of viable cell numbers. Also, FAPP2 siRNA transfected glioma and breast tumor cells showed significant increases in apoptosis upon incubation with soluble FasL, but the apoptosis did not necessarily correlate with increased Fas expression. These data demonstrate a previously unknown role for FAPP2 in conferring resistance to apoptosis and indicate that FAPP2 may be a target for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998642 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2009.03.126 | DOI Listing |
Hematol Oncol
April 2022
Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Most patients with T-ALL are treated with high-dose multi-agent chemotherapy due to limited targeted therapeutic options. To further investigate its pathogenesis and establish new therapeutic targets, we studied the role of FAPP2, a Golgi protein, that is, highly expressed in T-ALL, in the growth and function of T-ALL.
View Article and Find Full Text PDFMissed abortion (MA) is a common disease in obstetrics and gynecology. More and more studies have focused on the relationship between miRNAs and pregnancy maintenance and its related diseases. The aim of this article is to explore the relationship between miRNA and MA.
View Article and Find Full Text PDFMethods Mol Biol
July 2019
Department of Chemistry, School of Advance Sciences, VIT, Vellore, Tamil Nadu, India.
Herein, we describe methodological approaches for measuring in vitro transfer of sphingolipids (SLs) between membranes. The approaches rely on direct tracking of the lipid. Typically, direct tracking involves lipid labeling via attachment of fluorophores or introduction of radioactivity.
View Article and Find Full Text PDFJ Biol Chem
October 2018
From the Structural Biology Unit of CIC bioGUNE, Technology Park of Bizkaia, 48160 Derio, Spain,
The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with -oleoyl-galactosylceramide.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2013
The Hormel Institute, University of Minnesota, Austin, MN, USA.
Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!