The discovery of 4'-azidocytidine (3) (R1479) (J. Biol. Chem. 2006, 281, 3793; Bioorg. Med. Chem. Lett. 2007, 17, 2570) as a potent inhibitor of RNA synthesis by NS5B (EC(50) = 1.28 microM), the RNA polymerase encoded by hepatitis C virus (HCV), has led to the synthesis and biological evaluation of several monofluoro and difluoro derivatives of 4'-azidocytidine. The most potent compounds in this series were 4'-azido-2'-deoxy-2',2'-difluorocytidine and 4'-azido-2'-deoxy-2'-fluoroarabinocytidine with antiviral EC(50) of 66 nM and 24 nM in the HCV replicon system, respectively. The structure-activity relationships within this series were discussed, which led to the discovery of these novel nucleoside analogues with the most potent compound, showing more than a 50-fold increase in antiviral potency as compared to 4'-azidocytidine (3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm801595c | DOI Listing |
Nat Chem
December 2023
Department of Chemistry, Rice University, Houston, TX, USA.
Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents.
View Article and Find Full Text PDFNat Commun
February 2023
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
The electrochemical stability window of the electrolyte solution limits the energy content of non-aqueous lithium metal batteries. In particular, although electrolytes comprising fluorinated solvents show good oxidation stability against high-voltage positive electrode active materials such as LiNiCoMnO (NCM811), the ionic conductivity is adversely affected and, thus, the battery cycling performance at high current rates and low temperatures. To address these issues, here we report the design and synthesis of a monofluoride ether as an electrolyte solvent with Li-F and Li-O tridentate coordination chemistries.
View Article and Find Full Text PDFJ Org Chem
October 2021
Enamine Ltd.; Chervonotkatska 78, 02094 Kyiv, Ukraine, www.enamine.net.
A general approach to bicyclic fused pyrrolidines via [3 + 2]-cycloaddition between nonstabilized azomethyne ylide and endocyclic electron-deficient alkenes was elaborated. "Push-pull" alkenes and CF-alkenes did not react with the azomethyne ylide under the previously reported conditions, and we developed a superior protocol (LiF, 140 °C, no solvent). Among obtained products were medchem-relevant bicyclic sulfones, monofluoro-, difluoro-, and trifluoromethyl-substituted pyrrolidines.
View Article and Find Full Text PDFJ Am Chem Soc
April 2021
Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.
The first catalytic intermolecular 1,2-alkylborylation reaction via a radical-relay mechanism between unactivated olefins, bis(pinacolato)diboron, and an alkyl electrophile is reported. Successful implementation of this method requires that the competing boryl substitution of the alkyl electrophile is retarded to facilitate the radical relay. This challenge was overcome using electronically or sterically demanding alkyl electrophiles, which results in the simultaneous and highly regioselective introduction of a -difluoro, monofluoro, tertiary, or secondary alkyl group and a boryl group across the C═C double bond.
View Article and Find Full Text PDFJ Phys Chem A
December 2019
ELTE Eötvös University , Institute of Chemistry, Laboratory of Molecular Spectroscopy , PO Box 32, H-1518 Budapest 112 , Hungary.
The B̃-X̃ laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of the atmospherically important β-monofluoro ethoxy (MFEO), β,β-difluoro ethoxy (DFEO), and β,β,β-trifluoro ethoxy (TFEO) radicals were recorded with vibronic resolution under jet-cooled conditions. To simulate the spectra, Franck-Condon factors were obtained from quantum chemical computations carried out at the CAM-B3LYP/6-311++G(d,p) level of theory. The simulations reproduce well both the LIF and DF spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!