A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans. | LitMetric

Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans.

Ecology

Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50010, USA.

Published: March 2009

The endocrine system plays an integral role in the regulation of key life-history traits. Insulin-like growth factor-1 (IGF-1) is a hormone that promotes growth and reproduction, and it has been implicated in the reduction of lifespan. IGF-1 is also capable of responding plastically to environmental stimuli such as resource availability and temperature. Thus pleiotropic control of life-history traits by IGF-1 could provide a mechanism for the evolution of correlated life-history traits in a new or changing environment. An ideal system in which to investigate the role of IGF-1 in life-history evolution exists in two ecotypes of the garter snake Thamnophis elegans, which derive from a single recent ancestral source but have evolved genetically divergent life-history characteristics. Snakes from meadow populations near Eagle Lake, California (USA) exhibit slower growth rates, lower annual reproductive output, and longer median adult lifespans relative to populations along the lakeshore. We hypothesized that the IGF-1 system has differentiated between these ecotypes and can account for increased growth and reproduction and reduced survival in lakeshore vs. meadow snakes. We tested for a difference in plasma IGF-1 levels in free-ranging snakes from replicate populations of each ecotype over three years. IGF-1 levels were significantly associated with adult body size, reproductive output, and season in a manner that reflects established differences in prey ecology and age/size-specific reproduction between the ecotypes. These findings are discussed in the context of theoretical expectations for a tradeoff between reproduction and lifespan that is mediated by pleiotropic endocrine mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1890/08-0850.1DOI Listing

Publication Analysis

Top Keywords

life-history traits
12
garter snake
8
snake thamnophis
8
thamnophis elegans
8
growth reproduction
8
reproductive output
8
igf-1 levels
8
igf-1
7
life-history
6
evolutionary ecology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!