beta-Phorbol esters (BPE), synthetic analogues of diacylglycerol (DAG), induce the potentiation of transmission in many kinds of synapses through activating the C(1) domain-containing receptors. However, their effects on synaptic vesicle exocytosis have not yet been investigated. Here, we evaluated the vesicular exocytosis directly from individual large mossy fiber boutons (LMFBs) in hippocampal slices from transgenic mice that selectively express synaptopHluorin (SpH). We found that the activity-dependent increment of SpH fluorescence (DeltaSpH) was enhanced by 4beta-phorbol 12,13-diacetate (PDAc), one of the BPEs, without influencing the recycled component of SpH. These PDAc effects on DeltaSpH were almost completely inhibited by staurosporine, a non-selective antagonist of protein kinases. However, intermittent synaptic transmission was still potentiated through a staurosporine-resistant mechanism. The staurosporine-sensitive cascade may facilitate the vesicle replenishment, thus maintaining the fidelity of transmission at a high level during repetitive firing of the presynaptic neuron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717968 | PMC |
http://dx.doi.org/10.1007/s12576-009-0031-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!