Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When analytes containing color are irradiated with a pulsed UV laser in the ion source of a mass spectrometer, molecules such as dyes or pigments absorb energy, resulting in their desorption and ionization. This method, laser desorption mass spectrometry (LDMS), has been used successfully to analyze colorants of forensic interest in a wide variety of materials. Here, we present and interpret the most complex of such spectra obtained to date from a sample of fingernail polish. Interpretation of the spectrum provides a unique opportunity to characterize the laser desorption mass spectra of some unexpected inorganic materials found in cosmetics, such as "broken glass", cyanide compounds, and heavy metals. Also, the possibility of a useful forensic database of LDMS spectra of fingernail polishes is considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-009-2760-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!