Environmental hazard assessment of cheese manufacturing effluent treated for hydrogen production.

Bull Environ Contam Toxicol

Department of Biology, Section of Animal Biology, Unit of Environmental Management, Pollution and Ecotoxicology, University of Patras, Rio, Patras, 26500, Greece.

Published: September 2009

Toxicity of effluents after treatment in an anaerobic fermentation system for hydrogen production is evaluated with three biotests: The zebrafish Danio rerio embryo test, the Thamnotoxkit F and the Daphtoxkit F(TM) magna. Samples were classified from "very" to "extremely toxic". Average toxicity values for zebrafish were 1.55% (24 h) and 0.75% (48 h), for Thamnocephalus 0.69% (24 h) and for Daphnia 2.51% (24 h) and 1.82% (48 h). Statistical analysis between physicochemical parameters and LC(50) values revealed that PO(4)(-3), SO(4)(-2), NH(3)N and NO(3)(-) have the major contribution to toxicity. Based on results, this treatment is considered an environmentally ineffective way of managing the specific wastes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-009-9712-xDOI Listing

Publication Analysis

Top Keywords

hydrogen production
8
environmental hazard
4
hazard assessment
4
assessment cheese
4
cheese manufacturing
4
manufacturing effluent
4
effluent treated
4
treated hydrogen
4
production toxicity
4
toxicity effluents
4

Similar Publications

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

Polymer material innovations for a green hydrogen economy.

Chem Commun (Camb)

January 2025

Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.

Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.

View Article and Find Full Text PDF

The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).

View Article and Find Full Text PDF

The GacS/GacA two-component system strongly regulates antimicrobial competition mechanisms of MFE01 strain.

J Bacteriol

January 2025

Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France.

Unlabelled: MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of gene by the transposon was insufficient to explain these phenotypes.

View Article and Find Full Text PDF

Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!