We demonstrate selective excitation of soliton trains residing in different gaps or within the same Bloch band of a new type of photonic lattice merely by changing the orientation of an input probe beam. A self-focusing and -defocusing hybrid nonlinearity as established in a nonconventionally biased photorefractive crystal leads to controlled soliton transitions from different band edges or subband edges, in good agreement with our theoretical analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.34.001114 | DOI Listing |
Nano Lett
January 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China.
Strain solitons have been widely observed in van der Waals materials and their heterostructures. They can manifest as one-dimensional (1D) wires and quasi-two-dimensional (2D) networks. However, their coexistence within the same region has rarely been observed, and their interplay remains unexplored.
View Article and Find Full Text PDFA coherent concatenation of multiple solitary waves may lead to a stable infrared and visible broadband filament in a ceramic YAG polycrystal. This self-trapped soliton train is leveraged to implement self-referenced multiplex coherent anti-Stokes Raman scattering (SR-M-CARS) imaging. Simulations and experiments illustrating the filamentation process and the concatenation of focusing-defocusing cycles in ceramic and crystal YAG are presented.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Optoelectronic Sensing and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China.
We present a novel approach to realize three-dimensional (3D) matter wave solitons (MWSs) transformation between different optical potential wells by manipulating their depths and centers. The 3D MWSs are obtained by the square operator method, and transformed to other types (elliptical/ring/necklace) by performing time evolution with the split-step Fourier method. The effectiveness and reliability of our approach is demonstrated by comparing the transformed solitons with those obtained iteratively using the square operator method.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.
Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.
View Article and Find Full Text PDFNanophotonics
September 2024
Departamento de Física and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, Lisboa 1749-016, Portugal.
Flat-band periodic materials are characterized by a linear spectrum containing at least one band where the propagation constant remains nearly constant irrespective of the Bloch momentum across the Brillouin zone. These materials provide a unique platform for investigating phenomena related to light localization. Meantime, the interaction between flat-band physics and nonlinearity in continuous systems remains largely unexplored, particularly in continuous systems where the band flatness deviates slightly from zero, in contrast to simplified discrete systems with exactly flat bands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!