Backward terahertz pulses were converted from ultrafast pulses of a laser amplifier within multiperiod periodically poled LiNbO3 (PPLN) wafers. The average output powers of more than 2 microW were obtained from all six domain periods, corresponding to the frequency range of 217 GHz-2.373 THz. Among the six periods, the highest output power of 10.7 microW and the narrowest linewidth of 5.98 GHz were achieved at the periods of 66.5 microm and 150.0 microm, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.34.000995 | DOI Listing |
Sci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFNanoscale
December 2024
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
In the field of nonlinear optics and physical quantity detection, the use of the second harmonic wave (SHW) generated in ferroelectric crystals is proposed to realize multi-physical quantity detection with the Janus property. In view of the single physical quantity detected by the current research and the single application scenario, this paper proposes a multi-functional and novel nonlinear Janus metastructure (NJMS), which exploits the SHW to achieve highly sensitive multi-physical quantity detection in the terahertz frequency range and shows Janus properties in both the forward and backward directions of the system. The NJMS is realized to detect refractive indices, thicknesses, and angles with different modes in the forward and backward directions.
View Article and Find Full Text PDFWe experimentally demonstrate a liquid crystal (LC)-integrated EIT metasurface for active THz polarization conversion and asymmetric transmission. By controlling the LC orientation under static magnetic field anchoring and an adjustable electric field, the device realizes the active control from the OFF state to the ON state, corresponding to the orthogonal polarization excitation modes of the EIT metasurface. Furthermore, based on the different polarization responses at forward and backward incidences, we achieve asymmetric transmission at the EIT peak and two nearby resonances, with its isolation actively manipulated by the external electric field.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Terahertz Technology Innovation Research Institute, and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai, 200093, China.
Metasurface zone plates exhibit stronger optical control capabilities than traditional Fresnel zone plates, especially in polarization transformation and multiplexing. However, there are still few studies on metasurface zone plates that can be used for simultaneous control of forward and backward waves. In this work, we propose what is to our knowledge a new scheme that utilizes metasurface zone plates for orthogonal linear polarization separation and wavefront manipulation at the same time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!