Second-harmonic generation (SHG) imaging is combined with coherent anti-Stokes Raman scattering (CARS) microscopy to follow the process of optical clearing in human skin ex vivo using dimethyl sulfoxide (DMSO) as the optical clearing agent. SHG imaging revealed that DMSO introduces morphological changes to the collagen I matrix. By carefully measuring the dynamic tissue attenuation of the coherent nonlinear signal, using CARS reference signals during the clearing process, it is found that DMSO reduces the overall SHG response from dermal collagen. Evidence is provided for a role of DMSO in compromising the structure of collagen fibers, associated with a reduction of the tissue's scattering properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803712 | PMC |
http://dx.doi.org/10.1364/ao.48.000d79 | DOI Listing |
Sensors (Basel)
December 2024
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy.
Clear aligners have transformed orthodontic care by providing an aesthetic, removable alternative to traditional braces. However, their significant environmental footprint, contributing to approximately 15,000 tons of plastic waste annually, poses a critical challenge. To address this issue, advancements in 4D printing have introduced "smart" aligners with shape memory properties, enabling reshaping and reducing the number of aligners required per treatment.
View Article and Find Full Text PDFMolecules
December 2024
Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China.
Achieving superior circularly polarized luminescence brightness () is an important subject and continuous challenge for chiroptical materials. Herein, by applying a binary molecular design for the synthesis of chiral organo-Tb molecules, a novel pair of mononuclear chiral -pyrazolate-Tb enantiomers, [Tb(PMIP)(,-Ph-PyBox)] () and [Tb(PMIP)(,-Ph-PyBox)] (), have been synthesized and characterized. The three 1-phenyl-3-methyl-4-(isobutyryl)-5-pyrazolone () ligands play the role of efficient luminescence sensitizers and strong light-harvesting antennas, while the enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine ligand (/) is employed as the strong point-chiral inducer.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
Despite significant advancements in bioimaging technology, only a limited number of fluorophores are currently approved for clinical applications. Indocyanine green (ICG) is the first FDA-approved near-infrared (NIR) fluorophore and has significantly advanced clinical interventions over the past three decades. However, its single-channel imaging at 800 nm emission is often insufficient for capturing comprehensive diagnostic information during surgery.
View Article and Find Full Text PDFBiomedicines
December 2024
Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy.
The chicken embryo has emerged as a valuable model for preclinical studies due to its unique combination of accessibility, affordability, and relevance to human biology. Its rapid development, external growth environment, and clear structural visibility offer distinct advantages over traditional mammalian models. These features facilitate the study of real-time biological processes, including tissue development, tumor growth, angiogenesis, and drug delivery, using various imaging modalities, such as optical imaging, magnetic resonance imaging, positron emission tomography, computed tomography, and ultrasound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!