Stick insect (Carausius morosus) leg muscles contract and relax slowly. Control of stick insect leg posture and movement could therefore differ from that in animals with faster muscles. Consistent with this possibility, stick insect legs maintained constant posture without leg motor nerve activity when the animals were rotated in air. That unloaded leg posture was an intrinsic property of the legs was confirmed by showing that isolated legs had constant, gravity-independent postures. Muscle ablation experiments, experiments showing that leg muscle passive forces were large compared with gravitational forces, and experiments showing that, at the rest postures, agonist and antagonist muscles generated equal forces indicated that these postures depended in part on leg muscles. Leg muscle recordings showed that stick insect swing motor neurons fired throughout the entirety of swing. To test whether these results were specific to stick insect, we repeated some of these experiments in cockroach (Periplaneta americana) and mouse. Isolated cockroach legs also had gravity-independent rest positions and mouse swing motor neurons also fired throughout the entirety of swing. These data differ from those in human and horse but not cat. These size-dependent variations in whether legs have constant, gravity-independent postures, in whether swing motor neurons fire throughout the entirety of swing, and calculations of how quickly passive muscle force would slow limb movement as limb size varies suggest that these differences may be caused by scaling. Limb size may thus be as great a determinant as phylogenetic position of unloaded limb motor control strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665391 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5510-08.2009 | DOI Listing |
Sci Rep
January 2025
Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
The parthenogenetic life cycle of the stick insect Medauroidea extradentata offers unique advantages for the generation of genome-edited strains, as an isogenic and stable mutant line can in principle be achieved already in the first generation (G0). However, genetic tools for the manipulation of their genes had not been developed until now. Here, we successfully implement CRISPR/Cas9 as a technique to modify the genome of the stick insect M.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
Centromeres are essential for chromosome segregation in eukaryotes, yet their specification is unexpectedly diverse among species and can involve major transitions such as those from localized to chromosome-wide centromeres between monocentric and holocentric species. How this diversity evolves remains elusive. We discovered within-cell variation in the recruitment of the major centromere protein CenH3, reminiscent of variation typically observed among species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Biological Sciences, University of Montana, Missoula, MT 59812.
Evolution
December 2024
Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia.
Facultatively parthenogenetic animals could help reveal the role of sexual conflict in the evolution of sex. Although each female can reproduce both sexually (producing sons and daughters from fertilized eggs) and asexually (typically producing only daughters from unfertilized eggs), these animals often form distinct sexual and asexual populations. We hypothesized that asexual populations are maintained through female resistance as well as the decay of male traits.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Many wingless arboreal arthropods can glide back to tree trunks following free falls. However, little is known about the behaviors and aerodynamics underlying such aerial performance, and how this may be influenced by body size. Here, we studied gliding performance by nymphs of the stick insect Extatosoma tiaratum, focusing on the dynamics of J-shaped trajectories and how gliding capability changes during ontogeny.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!