Nanocrystalline diamond has been proposed as an anti-abrasive film on orthopedic implants. In this study, osteoblast (bone forming cells) functions including adhesion (up to 4h), proliferation (up to 5 days) and differentiation (up to 21 days) on different diamond film topographies were systematically investigated. In order to exclude interferences from changes in surface chemistry and wettability (energy), diamond films with nanometer and micron scale topographies were fabricated through microwave plasma enhanced chemical-vapor-deposition and hydrogen plasma treatment. Scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and water contact angle measurements verified the similar surface chemistry and wettability but varied topographies for all of the diamond films prepared on silicon in this study. Cytocompatibility assays demonstrated enhanced osteoblast functions (including adhesion, proliferation, intracellular protein synthesis, alkaline phosphatase activity and extracellular calcium deposition) on nanocrystalline diamond compared to submicron diamond grain size films for all time periods tested up to 21 days. An SEM study of osteoblast attachment helped to explain the topographical impact diamond had on osteoblast functions by showing altered filopodia extensions on the different diamond topographies. In summary, these results provided insights into understanding the role diamond nanotopography had on osteoblast interactions and more importantly, the application of diamond films to improve orthopedic implant lifetimes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2009.03.014DOI Listing

Publication Analysis

Top Keywords

osteoblast functions
12
diamond films
12
diamond
10
impact diamond
8
nanocrystalline diamond
8
study osteoblast
8
functions including
8
including adhesion
8
adhesion proliferation
8
surface chemistry
8

Similar Publications

MARCH5 ameliorates aortic valve calcification via RACGAP1-DRP1 pathway associated mitochondrial quality control.

Biochim Biophys Acta Mol Cell Res

January 2025

Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China. Electronic address:

Background: Mitochondrial E3 ubiquitin ligase (MARCH5) as an important regulator in maintaining mitochondrial function. Our aims were to investigate the role and mechanism of MARCH5 in aortic valve calcification.

Methods: Human aortic valves, both calcified and non-calcified, were analyzed for MARCH5 expression using western blot.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.

Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.

Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Background/purpose: Osseointegration potential is greatly depended on the interaction between bone cells and dental implant surface. Since zirconia ceramic has a bioinert surface, functionalization of the surface with an organic compound allylamine was conducted to overcome its drawback of minimal interaction with the surrounding bone.

Materials And Methods: The zirconia surface was initially treated with argon glow discharge plasma (GDP), then combined with amine plasma at three different conditions of 50-W, 75-W and 85-W, to prepare the final samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!