Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior.

J Bone Miner Res

1Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740, USA.

Published: September 2009

The role of trabecular microarchitecture in whole-vertebral biomechanical behavior remains unclear, and its influence may be obscured by such factors as overall bone mass, bone geometry, and the presence of the cortical shell. To address this issue, 22 human T(9) vertebral bodies (11 female; 11 male; age range: 53-97 yr, 81.5 +/- 9.6 yr) were scanned with microCT and analyzed for measures of trabecular microarchitecture, BMC, cross-sectional area, and cortical thickness. Sixteen of the vertebrae were biomechanically tested to measure compressive strength. To estimate vertebral compressive stiffness with and without the cortical shell for all 22 vertebrae, two high-resolution finite element models per specimen-one intact model and one with the shell removed-were created from the microCT scans and virtually compressed. Results indicated that BMC and the structural model index (SMI) were the individual parameters most highly associated with strength (R(2) = 0.57 each). Adding microarchitecture variables to BMC in a stepwise multiple regression model improved this association (R(2) = 0.85). However, the microarchitecture variables in that regression model (degree of anisotropy, bone volume fraction) differed from those when BMC was not included in the model (SMI, mean trabecular thickness), and the association was slightly weaker for the latter (R(2) = 0.76). The finite element results indicated that the physical presence of the cortical shell did not alter the relationships between microarchitecture and vertebral stiffness. We conclude that trabecular microarchitecture is associated with whole-vertebral biomechanical behavior and that the role of microarchitecture is mediated by BMC but not by the cortical shell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730926PMC
http://dx.doi.org/10.1359/jbmr.090317DOI Listing

Publication Analysis

Top Keywords

trabecular microarchitecture
16
cortical shell
16
biomechanical behavior
12
role trabecular
8
microarchitecture
8
microarchitecture whole-vertebral
8
behavior role
8
whole-vertebral biomechanical
8
presence cortical
8
finite element
8

Similar Publications

Early-life malnutrition adversely affects nearly all organ systems, resulting in multiple physiological adaptations, including growth restriction and muscle and bone loss. Although there is growing evidence that probiotics effectively improve systemic growth under malnourished conditions in different animal models, our knowledge of the beneficial effects of probiotics on various organs is limited. Here, we show that Lactobacillus plantarum strain WJL (LpWJL) can mitigate skeletal muscle and bone loss in protein-malnourished juvenile mice.

View Article and Find Full Text PDF

Background: Postmenopausal Osteoporosis (PMOP) is characterized by decreased bone mass and deterioration of bone microarchitecture, leading to increased fracture risk. Current treatments often have adverse effects, necessitating safer alternatives. Kaempferol, a flavonoid identified as a key active component of the traditional Chinese medicine Yishen Gushu formula, has shown promise in improving bone health, but its mechanisms in PMOP treatment remain unclear.

View Article and Find Full Text PDF

Evaluation of radiation therapy on grafted and non-grafted defects: an experimental rat model.

J Appl Oral Sci

January 2025

Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil.

Objective: This study aimed to assess the effects of a single-dose radiation therapy (15 Gy) on grafted and non-grafted defects, bone microarchitecture, and collagen maturity.

Methodology: Bone defects were surgically created in rat femurs. The right femur defect was filled with blood clot (group "Clot") and the left femur defect by deproteinized bovine bone mineral graft (group "Xenograft").

View Article and Find Full Text PDF

Patients with Type 2 diabetes mellitus(T2DM) typically have an average or higher bone mineral density (BMD) but are at a significantly higher risk of fracture than patients without diabetes. Trabecular bone score (TBS) is a textural index derived from pixel gray-level variations in lumbar spine DXA image, which has been introduced as an indirect measure of bone quality. This study aimed to discuss the trends and annual rates of change in BMD and TBS with age in Chinese men with T2DM and men without diabetes mellitus.

View Article and Find Full Text PDF

Pym-18a, a novel pyrimidine derivative ameliorates glucocorticoid induced osteoblast apoptosis and promotes osteogenesis via autophagy and PINK 1/Parkin mediated mitophagy induction.

Biochem Pharmacol

January 2025

Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis, marked by reduced bone density and impaired osteoblast function. Current treatments have serious side effects, highlighting the need for new drug candidates. Pyrimidine derivatives have been noted for their potential in suppressing osteoclastogenesis, but their effects on osteogenesis and GIOP remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!