Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is a promising tool for large-scale screening of body fluids for the early detection of human diseases. Proteins, peptides, and metabolites present in cells, tissues, or in body fluids constitute the molecular signatures of individuals. The design and generation of material-based platforms for capturing molecular signatures from body fluids has gained increasing interest in recent years. Highly selective materials are attractive candidates for a wide range of applications in biofluid proteomics. We have therefore developed a procedure based on mesoporous silica particles for the selective binding and enrichment of low molecular weight plasma/serum proteins by MALDI MS analysis ( Terracciano, R., Gaspari, M., Testa, F., Pasqua, L., Cuda G., Tagliaferri, P., Cheng, M. C., Nijdam, A. J., Petricoin, E. F., Liotta, L. A., Ferrari, M., and Venuta, S. ( 2006 ) Selective binding and enrichment for low-molecular weight biomarker molecules in human plasma after exposure to nanoporous silica particles . Proteomics 6, 3243-3250 ). Mesoporous silica beads (MSB) are able to harvest peptides from plasma and serum by means of nanosized porous channels with high surface area, while excluding large size proteins. Moreover, the absorption properties can be modified since the pore walls can be functionalized with different chemical species due to the high concentration of silanol groups at the surface. In this study, we performed derivatization of MSB with different functionalities, and we evaluated the derivatized materials for plasma and urine peptidomic profiling. Aminopropyl, N-(2-aminoethyl)-3-aminopropyl, and N,N,N' tris-carboxymethyl ethylene diamine, have been introduced onto the mesoporous silica surfaces in order to modulate selective peptide enrichment. We also explored various experimental conditions in order to optimize the performance of chemically modified MSB in the peptide profiling of human plasma and urine. These new derivatized mesoporous surfaces, in addition to the previous nonderivatized MSB, constitute an extended and reliable platform of five distinct chromatographic phases with defined surface functionality and porosity. Several plasma and urine peptides were extracted from derivatized MSB and then profiled by MALDI-TOF MS. The reproducibility of sample preparation by different functionalized beads was evaluated via three replicate analyses of plasma and urine samples. Lower coefficients of variation in the mass values and peak intensities resulted for plasma in comparison to those of urine samples; nevertheless, these where satisfactory for diagnostic purposes. For human urine, a linear correlation was found between spiked peptide concentrations and their peak areas (R(2) > 0.98) with a limit of detection in the low-nanogram per milliliter range, thus confirming the high sensitivity of the methodology, previously demonstrated for human plasma. Different panels of peptide repertoires have thus been collected from highly porous substrates chemically conjugated with different functional groups, and these may be used in biomarker discovery for disease diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc800510f | DOI Listing |
Sci Rep
January 2025
Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.
In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
Immune checkpoint inhibitor (ICI) therapy is a cornerstone treatment for many cancers, but it can induce severe immunotoxicity, including acute interstitial nephritis (AIN). Currently, kidney biopsy is required to differentiate ICI-AIN from other causes of acute kidney injury (AKI). However, this invasive approach can lead to morbidity, delayed glucocorticoid treatment for patients with AIN, and unnecessarily prolonged suspension of ICI therapy in non-AIN patients.
View Article and Find Full Text PDFBioanalysis
January 2025
US FDA, Silver Spring, MD, USA.
The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFNutrients
January 2025
College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA.
Background/objectives: Urinary fluoride (UF) is the most well-established biomarker for fluoride exposure, and understanding its distribution can inform risk assessment for potential adverse systemic health effects. To our knowledge, this study is the first to report distributions of UF among youth according to sociodemographic factors in a nationally representative United States (US) sample.
Methods: The study included 1191 children aged 6-11 years and 1217 adolescents aged 12-19 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2016.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!