The paper is concerned with grouping, segmentation and accentuation occurring in the processes of stimuli perception. An universal model of these events is based on vector coding in neuronal networks. Grouping is unification of objects or events into collections according to their similarity. Segmentation is separation of such groups up to small ensembles of units. In neuroscience grouping and segmentation are regarded as referred to neural mechanisms underlying perceptual and semantic processes resulting in a phenomenal attachment or separation. It is assumed that stimuli in neuronal nets are encoded by combinations of excitations of cardinal neurons constituting excitation vectors. Differences among stimuli are formed as absolute values of their excitation vector differences. The more different are stimuli the separate are their perceptual and semantic representations. The more similar are respective stimuli, the less is their separation. It suggests that stimuli having similar excitation vectors would be grouped together. On the contrary stimuli with opposed excitation vectors would be segmented and pushed to different ensembles. The vector encoding is expressed also for location in space. Thus spatial separation of objects is increasing with the increasing of their spatial excitation vector differences. The universal principle of vector encoding of differences can be illustrated by color contrast: differences of contrast colors rise with increase of their excitation vector differences. Objects having similar excitation vectors constitute a group accentuated due to summation of their excitation vectors. Groups of objects characterized by different excitation vectors are mutually accentuated by a contrast mechanism. A plastic accentuation depends on novelty of stimulation being habituated during repeated stimulus presentations.
Download full-text PDF |
Source |
---|
J Cardiovasc Electrophysiol
January 2025
McGill University Health Centre, Montreal, Canada.
Background: Electrographic flow (EGF) mapping allows for the visualization of global atrial wavefront propagations. One mechanism of initiation and maintenance of atrial fibrillation (AF) is stimulation from EGF-identified focal sources that serve as driver sites of fibrillatory conduction. Electrographic flow consistency (EGFC) further quantifies the concordance of observed wavefront patterns, indicating that a healthier substrate shows more organized wavefront propagation and higher EGFC.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Volgograd State University, University Avenue 100, Volgograd 400062, Russia.
The first excited state of conjugated donor-acceptor molecules of C3 symmetry (octupolar molecules) is doubly degenerate. Such a doublet is known to be isomorphic to a spin 1/2. It is shown that a large electric dipole moment is associated with this spin.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway.
Minimum energy conical intersections can be used to rationalize photochemical processes. In this Letter, we examine an algorithm to locate these structures that does not require the evaluation of nonadiabatic coupling vectors, showing that it minimizes the energy on hypersurfaces that envelop the intersection seam. By constraining the states to be separated by a small non-zero energy difference, the algorithm ensures that numerical artifacts and convergence problems of coupled cluster theory at conical intersections are not encountered during the optimization.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Automation, Shanghai Maritime University, Shanghai 201306, China.
Multi-layer conductive structures, especially those with features like bolt holes, are vulnerable to hidden corrosion and cracking, posing a serious threat to equipment integrity. Early defect detection is vital for implementing effective maintenance strategies. However, the subtle signals produced by these defects necessitate highly sensitive non-destructive testing (NDT) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!