[Transfection of the nervous system cells].

Zh Vyssh Nerv Deiat Im I P Pavlova

Published: May 2009

A review. Transfection is a method of cell transformation based on the introduction of a plasmid encoding a protein or RNA into the living cells. Basic methods of transfection and their strengths and weaknesses are discussed. A large part of the review is focused on the lentiviral transduction as one of the most efficient methods of transformation of nerve cells. The development of modern systems of lentiviral transfection is traced and a number of works performed with the use of in vivo and in vitro lentiviral transfection of the nervous system are reviewed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nervous system
8
lentiviral transfection
8
[transfection nervous
4
system cells]
4
cells] review
4
transfection
4
review transfection
4
transfection method
4
method cell
4
cell transformation
4

Similar Publications

The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.

View Article and Find Full Text PDF

is a major causative agent of streptococcosis in Nile tilapia () and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure.

View Article and Find Full Text PDF

Mechanisms of Cancer-Induced Bone Pain.

J Pain Res

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.

Bone is a common site of advanced cancer metastasis, second only to the lungs and liver. Cancer-induced bone pain (CIBP) is a persistent and intense pain that is caused by a combination of inflammatory and neuropathic factors. As CIBP progresses, the degree of pain intensifies.

View Article and Find Full Text PDF

Interplay of epilepsy and long-term potentiation: implications for memory.

Front Neurosci

January 2025

Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.

The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy.

View Article and Find Full Text PDF

Anesthetics are crucial in surgical procedures and therapeutic interventions, but they come with side effects and varying levels of effectiveness, calling for novel anesthetic agents that offer more precise and controllable effects. Targeting Gamma-aminobutyric acid (GABA) receptors, the primary inhibitory receptors in the central nervous system, could enhance their inhibitory action, potentially reducing side effects while improving the potency of anesthetics. In this study, we introduce a proteomic learning of GABA receptor-mediated anesthesia based on 24 GABA receptor subtypes by considering over 4000 proteins in protein-protein interaction (PPI) networks and over 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!