The modulatory actions of GABA(A) receptor subunits are crucial for morphological and transcriptional neuronal activities. In this study, growth of hamster hippocampal neurons on biohybrid membrane substrates allowed us to show for the first time that the two major GABA(A) alpha receptor subunits (alpha(2,5)) are capable of early neuronal shaping plus expression differences of some of the main neuronal cytoskeletal factors (GAP-43, the neurotrophin--BDNF) and of Gluergic subtypes. In a first case the inverse alpha(5) agonist (RY-080) seemed to account for the reduction of dendritic length at DIV7, very likely via lower BDNF levels. Conversely, the effects of the preferentially specific agonist for hippocampal alpha(2) subunit (flunitrazepam) were, instead, directed at the formation of growth cones at DIV3 in the presence of greatly (P < 0.01) diminished GAP-43 levels as displayed by strongly reduced axonal sprouting. It is interesting to note that concomitantly to these morphological variations, the transcription of some Gluergic receptor subtypes resulted to be altered. In particular, flunitrazepam was responsible for a distinctly rising expression of axonal NR1 mRNA levels from DIV3 (P < 0.01) until DIV7 (P < 0.001), whereas RY-080 evoked a very great (P < 0.001) downregulation of dendritic GluR2 at only DIV7. Together, our results demonstrate that GABA(A) alpha(2,5) receptor-containing subunits by regulating the precise synchronization of cytoskeletal factors are considered key modulating neuronal elements of hippocampal morphological growth features. Moreover, the notable NR1 and GluR2 transcription differences promoted by these GABA(A) alpha subunits tend to favorably corroborate the early role of alpha(2) + alpha(5) on hippocampal neuronal networks in hibernating rodents through the recruitment and activation of silent neurons, and this may provide useful insights regarding molecular neurodegenerative events.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hipo.20584DOI Listing

Publication Analysis

Top Keywords

alpha subunits
8
gabaa receptor
8
receptor subunits
8
gabaa alpha
8
cytoskeletal factors
8
subunits
5
gabaa
5
hippocampal
5
neuronal
5
distinct alpha
4

Similar Publications

Background: von Hippel-Lindau (VHL) hereditary cancer syndrome is caused by mutations in the VHL tumor suppressor gene and is characterized by a predisposition to form various types of tumors, including renal cell carcinomas, hemangioblastomas, and pheochromocytomas. The protein products of the VHL gene, pVHL, are part of an ubiquitin ligase complex that tags hypoxia inducible factor alpha (HIF-α) for proteosomal degradation. pVHL has also been reported to bind to atypical protein kinase C (aPKC).

View Article and Find Full Text PDF

Alpelisib is a phosphatidylinositol 3-kinase inhibitor approved by the US Food and Drug Administration for the treatment of hormone receptor-positive metastatic breast cancer with (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α) mutation. In recent years a number of adverse effects have been observed to be associated with this therapy, the most notable of which is hyperglycemia. A literature search was conducted to include case studies, case series, systematic reviews, and meta-analyses within the last 10 years that evaluated patients with mutated hormone receptor-positive, human epidermal growth factor receptor 2 negative metastatic breast cancer.

View Article and Find Full Text PDF

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.

View Article and Find Full Text PDF

The ENaC taste receptor's perceived mechanism of mushroom salty peptides revealed by molecular interaction analysis.

NPJ Sci Food

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China.

The ENaC receptor acts as a taste receptor to recognize and perceive salty substances. This study explored the mechanisms by which the ENaC taste receptor recognizes and binds mushroom-derived salty peptides using molecular interaction and molecular simulation. The three subunits α, β, and γ of the ENaC taste receptor (SCNN1α, SCNN1β, and SCNN1γ) showed different recognition characteristics for the salty peptide.

View Article and Find Full Text PDF

Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!