Petal senescence is a type of programmed cell death (PCD) that is tightly regulated by multiple genes. We recently reported that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japanese morning glory (Ipomoea nil). Reduced InPSR26 expression in transgenic plants (PSR26r lines) resulted in accelerated petal senescence with hastened development of PCD symptoms, and transcript levels of autophagy-related genes were reduced in the petals. Autophagy visualized by monodansylcadaverine staining indicated reduced autophagic activity in the PSR26r plants. The results from our recent studies suggest that InPSR26 acts to delay the progression of PCD during petal senescence, possibly through regulation of the autophagic process. In this addendum, we discuss the role of autophagy in petal senescence as it relates to these findings.

Download full-text PDF

Source
http://dx.doi.org/10.4161/auto.5.4.8310DOI Listing

Publication Analysis

Top Keywords

petal senescence
24
regulates progression
8
programmed cell
8
cell death
8
senescence japanese
8
japanese morning
8
morning glory
8
progression pcd
8
pcd petal
8
petal
6

Similar Publications

Petal senescence represents a crucial phase in the developmental continuum of flowers, ensuing tissue differentiation and petal maturation, yet anteceding seed formation and development. Instigation of petal senescence entails myriad of changes at the cytological, physiological and molecular dimensions, mirroring the quintessential characteristics of cell death. In the current investigation biochemical and molecular intricacies were scrutinized across various developmental stages (bud to the senescent phase).

View Article and Find Full Text PDF

Small molecules inhibiting EPHEMERAL1 to extend flower longevity by regulating petal senescence.

Plant Cell Rep

December 2024

Floriculture Lab, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, (CSIR-IHBT), Palampur, H.P., 176061, India.

Everlastin1 and Everlastin2, potent inhibitors of EPH1, were identified through a wheat cell-free chemical-screening system. This innovative platform enables the development of small molecules that target 'undruggable' transcription factors. By specifically targeting the EPH1 pathway, these inhibitors delay petal senescence, extending the longevity and quality of ornamental flowers.

View Article and Find Full Text PDF
Article Synopsis
  • * A total of 100 MYB-related proteins were identified, primarily localized in the nucleus, and mapped across seven chromosomes, with evidence of collinear gene relationships indicating potential evolutionary duplication events.
  • * The study found that Motif 3 is the most conserved across MYB-related genes, and specific treatments with ABA and MeJA can influence gene expression, particularly in petals, indicating a significant role for these factors in flower senescence and growth regulation.
View Article and Find Full Text PDF

A homeodomain leucine zipper protein RhHB22 promotes petal senescence by repressing ascorbic acid biosynthesis in rose.

J Exp Bot

December 2024

Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China.

Premature petal senescence dramatically reduces flower quality and value. Ethylene and reactive oxygen species (ROS) are key players in accelerating rose petal senescence, but the molecular mechanism by which ethylene antagonizes ROS scavenging is not well understood. Here, we show that ethylene reduces ascorbic acid (AsA) production, leading to the accumulation of ROS and hastening petal senescence.

View Article and Find Full Text PDF

As a plant-specific gene family, class III peroxidases (PODs) play an important role in plant growth, development, and stress responses. However, the POD gene family has not been systematically studied in . In this study, a total of 57 genes were identified in the genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!