Purpose: This study determined the effects of cis-diamminedichloroplatinum(II) on radiation-induced foci formation of gamma-H2AX and Rad51 in lymphocytes.
Experimental Design: Twenty-eight cancer patients were irradiated for intrathoracic, pelvic, or head and neck tumors and received simultaneous cisplatin containing chemotherapy. The effect of cisplatin on radiation-induced gamma-H2AX and Rad51 foci as a response to ionizing radiation-induced DNA double-strand breaks was measured in lymphocytes after in vivo and in vitro radiochemotherapy. The role of DNA-dependent protein kinase and ataxia-telangiectasia mutated kinase in gamma-H2AX signaling, the consequences of altered gamma-H2AX foci formation on double-strand break end joining, was studied.
Results: Cisplatin decreased the number of induced gamma-H2AX foci in lymphocytes after in vivo or in vitro irradiation by 34% +/- 6% at days 0 to 3 after cisplatin (P < 0.0001) and remained significant until day 6. The variation in this cisplatin effect from patient to patient was larger than the retest error within the same patient (P = 0.01). The cisplatin effect was not accompanied by an inhibition of end joining of double-strand break as analyzed using gel electrophoresis of DNA under neutral conditions. Cisplatin also decreased radiation induced Rad51 foci formation in lymphocytes after stimulation of proliferation with phytohemagglutinin by 47% +/- 6% (P < 0.0001).
Conclusion: Cisplatin has long-term effects on the early double-strand break response of gamma-H2AX and Rad51 foci formation after ionizing radiation. Inhibition of sensing and processing of double-strand break by gamma-H2AX and Rad51 foci formation are important mechanisms by which cisplatin can alter the radiation response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-08-0650 | DOI Listing |
Sci Adv
January 2025
MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de La República, General Las Heras 1925, Montevideo, Uruguay.
The tumor microenvironment is an altered milieu that imposes multiple selective pressures leading to the survival and dissemination of aggressive and fit tumor cell subpopulations. How pre-tumoral and tumoral cells respond to changes in their microenvironment will determine the subsequent evolution of the tumor. In this study, we have subjected pre-tumoral and tumoral cells to coverslip-induced hypoxia, which recapitulates the intracellular hypoxia and extracellular acidification characteristic of the early tumor microenvironment, and we have used a combination of quantitative phase microscopy and epifluorescence to analyze diverse cellular responses to this altered environment.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland.
Purpose: Graves' disease (GD) and Graves' orbitopathy (GO) are multifactorial disorders with links to the gut microbiome and autoimmunity. It is observed that patients with GD exhibit altered gut microbiome diversity. However, little is known about the role of oral microbiota in GD and GO.
View Article and Find Full Text PDFFront Aging
December 2024
Diabetes Research Program, Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States.
Human skin plays an important role protecting the body from both extrinsic and intrinsic factors. Skin aging at cellular level, which is a consequence of accumulation of irreparable senescent keratinocytes is associated with chronological aging. However, cell senescence may occur independent of chronological aging and it may be accelerated by various pathological conditions.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA.
Problem: COVID-19 during pregnancy is linked to increased maternal morbidity and a higher incidence of preterm births (PTBs), yet the underlying mechanisms remain unclear. Cellular senescence, characterized by the irreversible cessation of cell division, is a critical process in placental function, and its dysregulation has been implicated in pregnancy complications like PTB. Senescence can be induced by various stressors, including oxidative stress, DNA damage, and viral infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!