With increasing availability of multimodality imaging systems, high-resolution anatomical images can be used to guide the reconstruction of emission tomography studies. By measuring reader performance on a lesion detection task, this study investigates the improvement in image-quality due to use of prior anatomical knowledge, for example organ or lesion boundaries, during SPECT reconstruction. Simulated (67)Ga -citrate source and attenuation distributions were created from the mathematical cardiac-torso (MCAT) anthropomorphic digital phantom. The SIMIND Monte Carlo software was then used to generate SPECT projection data. The data were reconstructed using the De Pierro maximum a posteriori (MAP) algorithm and the rescaled-block-iterative (RBI) algorithm for comparison. We compared several degrees of prior knowledge about the anatomy: no knowledge about the anatomy; knowledge of organ boundaries; knowledge of organ and lesion boundaries; and knowledge of organ, lesion, and pseudo-lesion (non-emission uptake altering) boundaries. The MAP reconstructions used quadratic smoothing within anatomical regions, but not across any provided region boundaries. The reconstructed images were read by human observers searching for lesions in a localization receiver operating characteristic (LROC) study of the relative detection/localization accuracies of the reconstruction algorithms. Area under the LROC curve was computed for each algorithm as the comparison metric. We also had humans read images reconstructed using different prior strengths to determine the optimal trade-off between data consistency and the anatomical prior. Finally by mixing together images reconstructed with and without the prior, we tested to see if having an anatomical prior only some of the time changes the observer's detection/localization accuracy on lesions where no boundary prior is available. We found that anatomical priors including organ and lesion boundaries improve observer performance on the lesion detection/localization task. Use of just organ boundaries did not provide a statistically significant improvement in performance however. We also found that optimal prior strength depends on the level of anatomical knowledge, with a broad plateau in which observer performance is near optimal. We found no evidence that having anatomical priors use lesion boundaries only when available changes the observer's performance when they are not available. We conclude that use of anatomical priors with organ and lesion boundaries improves reader performance on a lesion-detection/localization task, and that pseudo-lesion boundaries do not hurt reader performance. However, we did not find evidence that a prior using only organ boundaries helps observer performance. Therefore we suggest prior strength should be tuned to the organ-only case, since a prior will likely not be available for all lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829316PMC
http://dx.doi.org/10.1109/TMI.2009.2017741DOI Listing

Publication Analysis

Top Keywords

organ lesion
20
lesion boundaries
20
reader performance
16
anatomical priors
16
knowledge organ
12
organ boundaries
12
observer performance
12
prior
11
boundaries
11
anatomical
10

Similar Publications

Development of Tc-Labeled Complexes with a Niraparib HYNIC Derivative for PARP-Positive Tumor Imaging.

Mol Pharm

January 2025

Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.

View Article and Find Full Text PDF

Primary hepatic lymphoma (PHL) is a lymphoproliferative disorder confined to the liver, with no evidence of lymphomatous involvement in other organs. Here, we report a case of diffuse large B-cell lymphoma (DLBCL)-type PHL in a patient with a long history of primary biliary cholangitis (PBC) and Sjögren's syndrome (SS). A 78-year-old woman presented with epigastralgia and was found to have a solitary liver tumor by contrast-enhanced computed tomography (CT).

View Article and Find Full Text PDF

Renal tubular S100A7a impairs fatty acid oxidation and exacerbates renal fibrosis via both intracellular and extracellular pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Peking University, Beijing 100034, China. Electronic address:

A couple of S100 family proteins (S100s) have been reported to exert pro-inflammatory functions in the progression of renal fibrosis (RF). Unlike some S100s which are expressed by both epithelial and stromal inflammatory cells, S100A7 is restricted expressed in epithelium. Persistent S100A7 expression occurs in some invasive carcinomas and is associated with poor prognostic factors.

View Article and Find Full Text PDF

Background: This study aimed to investigate the effect of couch rotation angles on non-coplanar volumetric modulated arc therapy (ncVMAT) plan for stereotactic body radiotherapy (SBRT) in lung cancer patients and to evaluate the feasibility of clinically applying ncVMAT for SBRT.

Methods: Twenty-four lung cancer patients with a single lesion eligible for SBRT were enrolled in the study. Seven dual partial-arc VMAT plans with varying couch angles were designed for every patient.

View Article and Find Full Text PDF

Decellularization of fish tissues for tissue engineering and regenerative medicine applications.

Regen Biomater

November 2024

Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.

Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!