This paper describes the use of horseradish peroxidase (HRP) based biosensor for novel detection of glyphosate herbicide. The biosensor was prepared by electrochemically depositing poly(2,5-dimethoxyaniline) (PDMA) doped with poly(4-styrenesulfonic acid) (PSS) onto the surface of a gold electrode followed by electrostatic attachment of the enzyme HRP onto the PDMA-PSS composite film. Fourier transform infrared (FTIR) and UV-Vis spectrometry inferred that HRP was not denatured during its immobilization on PDMA-PSS composite film. The biosensing principle was based on the determination of the cathodic responses of the immobilized HRP to H(2)O(2), before and after incubation in glyphosate standard solutions. Glyphosate inhibited the activity of HRP causing a decrease in its response to H(2)O(2). The determination of glyphosate was achieved in the range of 0.25-14.0 microg L(-1) with a detection limit of 1.70 microg L(-1). The apparent Michaelis-Menten constant (calculated for the HRP/PDMA-PSS biosensor in the presence and absence of glyphosate was found to be 7.73 microM and 7.95 microM respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2009.02.007 | DOI Listing |
Nanotechnology
January 2025
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, Uppsala, SE-751 20, SWEDEN.
The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D).
View Article and Find Full Text PDFPest Manag Sci
January 2025
Seed Industry Research Centre, Christchurch, New Zealand.
Background: Ryegrass (Lolium spp.) is a key forage providing a $14 billion contribution to New Zealand's gross domestic product (GDP). However, ryegrass can also act as a weed and evolve resistance to herbicides used for its control.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China. Electronic address:
Studies have shown that the presence of allergens, including insecticides, significantly increases the risk of occupational allergic diseases among solar greenhouse workers. However, no studies have yet investigated the relationship between organophosphorus pesticide use by greenhouse workers and allergic diseases, and the role of the flora in this context remains unclear. Therefore, this study aimed to investigate the relationship between combined exposure to organophosphorus pesticides (OPs) and Glyphosate (GLY) and changes in total immunoglobulin E (IgE) levels, as well as to analyze the role of nasal flora in allergic status.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
EU-Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM), Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach D-70736, Germany.
The quantification of glyphosate (Gly) and its metabolite aminomethylphosphonic acid (AMPA) in food is often impaired by matrix components. Specifically, interaction between the analytes and natural matrix components in food leads to reduced analyte recovery rates. Here, we studied how the addition of ethylenediaminetetraacetic acid (EDTA) impacted the QuPPe recovery rates of Gly and its metabolite in eight mostly problematic matrices using tandem mass spectrometry.
View Article and Find Full Text PDFTalanta
January 2025
College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.
This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!