Back to basics--how the evolution of the extracellular matrix underpinned vertebrate evolution.

Int J Exp Pathol

Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK.

Published: April 2009

The extracellular matrix (ECM) is a complex substrate that is involved in and influences a spectrum of behaviours such as growth and differentiation and is the basis for the structure of tissues. Although a characteristic of all metazoans, the ECM has elaborated into a variety of tissues unique to vertebrates, such as bone, tendon and cartilage. Here we review recent advances in our understanding of the molecular evolution of the ECM. Furthermore, we demonstrate that ECM genes represent a pivotal family of proteins the evolution of which appears to have played an important role in the evolution of vertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676697PMC
http://dx.doi.org/10.1111/j.1365-2613.2008.00637.xDOI Listing

Publication Analysis

Top Keywords

evolution extracellular
8
extracellular matrix
8
basics--how evolution
4
matrix underpinned
4
underpinned vertebrate
4
evolution
4
vertebrate evolution
4
ecm
4
matrix ecm
4
ecm complex
4

Similar Publications

is the causative agent of the venereal disease trichomoniasis which infects men and women globally and is associated with serious outcomes during pregnancy and cancers of the human reproductive tract. Trichomonads parasitize a range of hosts in addition to humans including birds, livestock, and domesticated animals. Recent genetic analysis of trichomonads recovered from columbid birds has provided evidence that these parasite species undergo frequent host-switching, and that a current epoch spillover event from columbids likely gave rise to in humans.

View Article and Find Full Text PDF

Extracellular triacylglycerol hydrolases (ETH) play a critical role for microorganisms, acting as essential tools for lipid breakdown and survival in challenging environments. The pursuit of more effective ETH genes and enzymes through evolution holds significant potential for enhancing living conditions. This study employs a proteogenomic approach to identify high G+C ETH in a notable Gram-positive bacterium, .

View Article and Find Full Text PDF

The genus comprises unique atypical spirochete bacteria that includes the etiological agent of leptospirosis, a globally important zoonosis. Biofilms are microecosystems composed of microorganisms embedded in a self-produced matrix that offers protection against hostile factors. Leptospires form biofilms in rice fields and unsanitary urban areas, and while colonizing rodent kidneys.

View Article and Find Full Text PDF

Evolutionary study and structural basis of proton sensing by Mus GPR4 and Xenopus GPR4.

Cell

December 2024

Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China. Electronic address:

Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species.

View Article and Find Full Text PDF

Differential cell architecture and microenvironmental responses of pretumoral and tumoral cellular models exposed to coverslip-induced hypoxia.

Histochem Cell Biol

January 2025

Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de La República, General Las Heras 1925, Montevideo, Uruguay.

The tumor microenvironment is an altered milieu that imposes multiple selective pressures leading to the survival and dissemination of aggressive and fit tumor cell subpopulations. How pre-tumoral and tumoral cells respond to changes in their microenvironment will determine the subsequent evolution of the tumor. In this study, we have subjected pre-tumoral and tumoral cells to coverslip-induced hypoxia, which recapitulates the intracellular hypoxia and extracellular acidification characteristic of the early tumor microenvironment, and we have used a combination of quantitative phase microscopy and epifluorescence to analyze diverse cellular responses to this altered environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!