A network of coupled chaotic oscillators can switch spontaneously to a state of collective synchronization at some critical coupling strength. We show that for a locally coupled network of units with coexisting quiescence and chaotic spiking states, set slightly below the critical coupling value, the collective excitable or bistable states of synchronization arise in response to a stimulus applied to a single node. We provide an explanation of this behavior and show that it is due to a combination of the dynamical properties of a single node and the coupling topology. By the use of entropy as a collective indicator, we present a new method for controlling the transient synchronization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3080195 | DOI Listing |
J Biol Rhythms
January 2025
Department of Physics and i3n, University of Aveiro, Aveiro, Portugal.
The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time.
View Article and Find Full Text PDFISME Commun
January 2025
Ifremer, Dyneco, F-29280 Plouzané, France.
Phytoplankton supports food webs in all aquatic ecosystems. Ecological studies highlighted the links between environmental variables and species successions . However, the role of life cycle characteristics on phytoplankton community dynamics remains poorly characterized.
View Article and Find Full Text PDFAcetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .
View Article and Find Full Text PDFCommun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFNano Lett
January 2025
University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!