Improved double planar probe data analysis technique.

Rev Sci Instrum

Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Published: March 2009

Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3089811DOI Listing

Publication Analysis

Top Keywords

double planar
8
planar probe
8
probe data
8
number density
8
improved double
4
probe
4
data analysis
4
analysis technique
4
technique plasma
4
plasma electron
4

Similar Publications

Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.

View Article and Find Full Text PDF

The role of spatial arrangement of aromatic rings on the binding of ,'-diheteroaryl guanidine ligands to the G2C4/G2C4 motif DNA.

Phys Chem Chem Phys

January 2025

Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).

View Article and Find Full Text PDF

Selective Interface Engineering with Large π-Conjugated Molecules Enables Durable Zn Anodes.

Angew Chem Int Ed Engl

January 2025

USTC: University of Science and Technology of China, School of Chemistry and Materials Science, No.96, JinZhai Road, Baohe District, 230026, Hefei, CHINA.

Undesirable dendrite growth and side reactions at the electrical double layer (EDL) of Zn/electrolyte interface are critical challenges limiting the performance of aqueous zinc ion batteries. Through density functional theory calculations, we demonstrate that grafting large π-conjugated molecules (e.g.

View Article and Find Full Text PDF

The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size-extensivity (MR-CISD+Q and MR-CISD) and averaged quadratic coupled cluster theory (MR-AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc-pVDZ and cc-pVTZ basis sets.

View Article and Find Full Text PDF

This study investigates the unsteady aerodynamic mechanisms underlying the efficient flight of birds and proposes a biomimetic flapping-wing aircraft design utilizing a double-crank double-rocker mechanism. Building upon a detailed analysis of avian flight dynamics, a two-stage foldable flapping mechanism was developed, integrating an optimized double-crank double-rocker structure with a secondary linkage system. This design enables synchronized wing flapping and spanwise folding, significantly enhancing aerodynamic efficiency and dynamic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!