Thermal fluctuations in block copolymer (BCP) materials characteristically drive the ordering phase transition order from second to first order by the well known Brazovskii mechanism and there have been many observations of jumps in x-ray and neutron scattering intensity data at the order-disorder transition (ODT) that signal this phenomenon. However, the existence of quenched disorder can either destroy the ODT or restore the second-order nature of this type of phase transition. The present work considers how the dispersion of C(60) ("buckyballs"), which is prone to clustering in polymeric media, into poly(styrene)-block-poly(isoprene) to see how this nanoparticle additive alters the qualitative character of the BCP ordering. Small angle x-ray scattering indicates that a small amount (approximately = 1 mass %) of C(60) causes the BCP to remain disordered over a wide temperature range so that a phase transition no longer exists. This phenomenon offers both technological problems and opportunities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3089667 | DOI Listing |
Adv Mater
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.
View Article and Find Full Text PDFAdv Mater
January 2025
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
NaV(PO), based on multi-electron reactions between V/V/V, is a promising cathode material for SIBs. However, its practical application is hampered by the inferior conductivity, large barrier of V/V, and stepwise phase transition. Herein, these issues are addressed by constructing a medium-entropy material (NaVTiAlCrMnNi(PO), ME-NVP) with strong ME─O bond and highly occupied Na2 sites.
View Article and Find Full Text PDFJ Anat
January 2025
Institut des Sciences de l'Évolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France.
Raoellidae are small artiodactyls from the Indian subcontinent closely related to stem cetaceans. They bring crucial information to understand the early phase of the land-to-water transition in Cetacea. If they are considered to be partly aquatic, the question of their dietary habits remains partly understood due to their "transitional" morphology.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Quantum Matter Physics, University of Geneva, 24, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
Tunable electronic properties in transition metal dichalcogenides (TMDs) are essential to further their use in device applications. Here, we present a comprehensive scanning tunneling microscopy and spectroscopy study of a doping-induced charge density wave (CDW) in semiconducting bulk 1T-ZrSe. We find that atomic impurities that locally shift the Fermi level () into the conduction band trigger a CDW reconstruction concomitantly to the opening of a gap at .
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:
This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!