Polyamorphism in tin tetraiodide.

J Chem Phys

Department of Physics, Ehime University, Matsuyama 790-8577, Japan.

Published: March 2009

The discovery of a first-order phase transition in fluid phosphorus aroused renewed interest in polyamorphism in liquids with a locally tetrahedral molecular structure. We have performed in situ synchrotron x-ray diffraction measurements on tin tetraiodide, which consists of SnI(4) tetrahedral molecules at ambient pressure, and established that the liquid forms existing above and below 1.5 GPa, where the slope of the melting curve of the solid phase changes abruptly, have different structures. This discovery offers evidence of thermodynamically stable polyamorphism in general compounds as well as in elements. A possible phase diagram that includes the two amorphous states already found is proposed based on the pseudobinary regular solution model. The vertex-to-face orientation between the nearest molecules plays a key role in the transition from the low-pressure to the high-pressure liquid phase.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3109691DOI Listing

Publication Analysis

Top Keywords

tin tetraiodide
8
polyamorphism tin
4
tetraiodide discovery
4
discovery first-order
4
phase
4
first-order phase
4
phase transition
4
transition fluid
4
fluid phosphorus
4
phosphorus aroused
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!