Radical-substituted radical cations are attractive spin building blocks of molecule-based magnets. The introduction of an additional spin as a counteranion provides a unique three-spin system wherein the magnetic interactions between the spins of the radical substituent and the radical cation (J(intra)) and those between the spins of the radical cation and the anion (J(inter)) play decisive roles in determining the magnetic properties of the system. We report the first demonstration of a ferrimagnet by utilizing a large-J(intra) system, nitronyl nitroxide-substituted dihydrophenazine radical cation (NNDPP(*+)) in combination with tetrabromoferrate (FeBr(4)(-)) as the counteranion. On the basis of measurements of dc and ac magnetic susceptibilities and heat capacity, the magnetic properties of NNDPP(*+) x FeBr(4)(-) are elucidated to be those of a three-dimensional long-range-ordered ferrimagnet with T(c) = 6.7 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja808093zDOI Listing

Publication Analysis

Top Keywords

radical cation
16
radical-substituted radical
8
spins radical
8
magnetic properties
8
radical
6
ferrimagnet based
4
based radical-substituted
4
cation
4
cation salt
4
salt radical-substituted
4

Similar Publications

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

Temperature-dependent rate constants for the reaction of the -dodecane radical cation (RH˙) with trivalent lanthanide ion-complexed ,,','-tetraoctyl diglycolamide (TODGA) over the range 10-40 °C have been determined using electron pulse radiolysis/transient absorption spectroscopy techniques. For the free ligand, an activation energy of = 20.4 ± 0.

View Article and Find Full Text PDF

Deprotonation of 8-Oxo-7,8-dihydroadenine Radical Cation in Free and Encumbered Context: A Theoretical Study.

ACS Omega

December 2024

State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.

Due to the lower oxidation potential than natural nucleic acid bases, one-electron oxidation of DNA is usually funneled into the direction of intermediates for oxidized DNA damage like 8-oxo-7,8-dihydroadenine (8-oxoA) leading to a radical cation, which may undergo facile deprotonation. However, compared to the sophisticated studies devoted to natural bases, much less is known about the radical cation degradation behavior of an oxidized DNA base. Inspired by this, a comprehensive theoretical investigation is performed to illuminate the deprotonation of 8-oxoA radical cation (8-oxoA) in both free and encumbered context by calculating the p value and mapping the energy profiles.

View Article and Find Full Text PDF

Molecular characterization, transcriptional profiling, and antioxidant activity assessment of nucleoredoxin (NXN) as a novel member of thioredoxin from red-lip mullet (Planiliza haematocheilus).

Fish Shellfish Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Nucleoredoxin (NXN) is a prominent oxidoreductase enzyme, classified under the thioredoxin family, and plays a pivotal role in regulating cellular redox homeostasis. Although the functional characterization of NXN has been extensively studied in mammals, its role in fish remains relatively unexplored. In this study, the NXN gene from Planiliza haematocheilus (PhNXN) was molecularly and functionally characterized using in silico tools, expression analyses, and in vitro assays.

View Article and Find Full Text PDF
Article Synopsis
  • Electron microscopy is a powerful technique in nanotechnology, but it often causes random damage to samples being studied.
  • The introduction of a specific chemical probe can effectively manage this damage, allowing for clearer characterization of the interactions between electron beams and soft organic materials.
  • In experiments with Dewar benzene crystals subjected to a high-energy electron beam, researchers observed a significant increase in chemical reactions, amplifying the events by up to 90,000 times per incident electron.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!