Polysaccharide modification is the most fundamental factor that affects firmness of fruit during ripening. In grape, because of the lack of information on the modifications occurring in cell wall polysaccharides in skins, but also because this tissue contains large amounts of organoleptic compounds for winemaking, a study was performed on the evolution and extractability of polysaccharides from grape skins of Shiraz cultivar throughout ripening. A HEPES/phenol extraction technique was used to analyze Shiraz grape cell wall material isolated from skins of berries harvested from one to ten weeks after veraison. Total amounts in cell wall polysaccharides remained constant during ripening (4.2 mg/berry). A slight decrease in galactose content of insoluble polysaccharides was observed, as well as a significant de-esterification of methoxylated uronic acids, indicating that some modifications occur in cell wall polysaccharides. The water-soluble fraction represented a very small fraction of the whole polysaccharides, but its amounts increased more than 2-fold between the first and the last sample. Isolated cell walls were also analyzed for their protein composition. Last, hydroalcoholic extractions in model-wine solution were also performed on fresh skins. This extracted fraction was very similar to the water-soluble one, and increased during the entire period. By comparison with polysaccharide modifications described in flesh cell wall in previous works, it can be assumed that the moderate skin polysaccharide degradation highlights the protective role of that tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf803416wDOI Listing

Publication Analysis

Top Keywords

cell wall
20
wall polysaccharides
12
protein composition
8
cell walls
8
cell
7
polysaccharides
6
wall
5
changes polysaccharide
4
polysaccharide protein
4
composition cell
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.

View Article and Find Full Text PDF

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Seasonal Pattern of Endo-β-Mannanase Activity During Germination of , Exhibiting Morphophysiological Dormancy.

Plants (Basel)

January 2025

Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.

Morphophysiological dormancy (MPD) is considered one of the most primitive dormancy classes among seed plants. While extensive studies have examined the occurrence of endo-β-mannanase in seeds with physiological dormancy (PD) or non-dormancy, little is known about the activity of this enzyme in seeds with MPD. This study aimed to investigate the temporal and spatial patterns of endo-β-mannanase activity during dormancy break and germination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!