According to generally accepted scanning model proposed by M. Kozak, the secondary structure of 5'-untranslated regions (5'-UTR) of eukaryotic mRNAs can only cause an inhibitory effect on the translation initiation since it would counteract migration of the 40S ribosomal subunit along the mRNA polynucleotide chain. Thus, the existence of efficiently translatable mRNAs with long and highly structured 5'-UTRs is not compatible with the cap-dependent scanning mechanism. It is expected that such mRNAs should use alternative ways of translation initiation to be efficiently translated, first of all the mechanism of the internal ribosome entry mediated by special RNA structures called IRESes (for Internal Ribosome Entry Sites), which have been proposed to reside within their 5'-UTRs. In this paper, it is shown that this point of view is not correct and most probably based on experiments of mRNA translation in rabbit reticulocyte lysate. This cell free system does not reflect correctly the ratio of translation efficiencies of various mRNAs which is observed in the living cell. Using five different mRNAs of similar design which possess either relatively short leaders of cellular mRNAs (beta-globin and beta-actin mRNAs) or long and highly structured 5'-UTRs (c-myc, LINE-1, Apaf-1 mRNAs), we show that the translation activities of all tested 5'-UTRs are comparable, both in transfected cells and in a whole cytoplasmic extract of cultivated cells. This activity is strongly dependent on the presence of the cap at their 5'-ends.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mrnas long
12
long highly
12
highly structured
12
mrnas
9
translation initiation
8
structured 5'-utrs
8
internal ribosome
8
ribosome entry
8
translation
6
[efficient cap-dependent
4

Similar Publications

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Diapause is essential for insect survival under adverse environmental conditions and plays a crucial role in regulating reproduction. However, the role of long non-coding RNAs (lncRNAs) in this process remains unclear. In this study, we investigated the function of lncRNAs in the diapause of Aspongopus chinensis.

View Article and Find Full Text PDF

Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs).

View Article and Find Full Text PDF

Roles for the long non-coding RNA / in pancreatic beta cell function.

iScience

January 2025

Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK.

Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes.

View Article and Find Full Text PDF

Eugenol inhibits NEAT1 as a ceRNA in pre-cancerous breast lesions.

Heliyon

January 2025

Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong, 529525, China.

Objective: Eugenol (EU) from cloves is highly effective against different tumors. The long noncoding ribonucleic acids (lncRNAs), which play a role of competing endogenous RNAs (ceRNAs), suppress microRNAs (miRNAs) involved in post-transcriptional regulatory networks. The present work focused on analyzing how EU affected pre-cancerous breast lesions (PBL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!