The amphibian Xenopus tropicalis, whose genome has been recently sequenced, has become an important model organism for vertebrate developmental genetics. The development of cytogenetic tools in this new model organism should contribute to an understanding of the organization of the amphibian genome and the mapping of a variety of loci of interest. In this respect, oocyte lampbrush chromosomes are particularly useful for the localization of genomic sequences expressed during oogenesis. We have constructed a working map of X. tropicalis lampbrush chromosomes, which allows the 10 bivalents of the oocyte karyotype to be readily identified by distinctive combinations of specific landmark structures composed of lateral loops, spheres, and granules. We have also established the patterns of RNA Pol III sites over the chromosomes by immunofluorescence using antibodies directed against two Pol III subunits. Specific staining patterns were found for each chromosome, which constitute a supplementary tool for their identification. Developmental Dynamics 238:1492-1501, 2009. (c) 2009 Wiley-Liss, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.21930 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!