The Msx1 homeogene plays an important role in epithelial-mesenchymal interactions leading organogenesis. Msx1 gene is submitted to bidirectional transcription generating a long non-coding antisense (AS) RNA potentially involved in Msx1 expression regulation. RT-Q-PCR and RNA-FISH studies indicated that transient overexpression of the Msx1 AS transcript in 705IC5 mouse odontoblasts decreased the abundance of endogenous Msx1 S mRNA at the post-transcriptional level. Conversely, Msx1 overexpression increased the AS RNA level probably by activating AS transcription. In vivo mapping by RT-PCR evidenced both Msx1 RNAs in all adult mouse tissues tested raising the issue of Msx1 function during adulthood. The expression patterns of the two RNAs were similar, confirming the tight S/AS relationship. In particular, both Msx1 mRNAs and Msx1 protein were similarly distributed in eyes, and were found in regions with a common ectodermic origin and in cells potentially involved in regeneration. In conclusion, we report that Msx1 S RNA is negatively controlled by its AS RNA at a post-transcriptional level, and that the AS RNA is retrocontrolled positively by Msx1. The tight link between Msx1 S and AS RNAs constitutes a regulatory loop resulting in a fine-tuned expression of Msx1 which appears to be significant for adult homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.21762DOI Listing

Publication Analysis

Top Keywords

msx1
15
msx1 expression
8
post-transcriptional level
8
msx1 rnas
8
rna
5
autoregulatory loop
4
loop msx1
4
expression
4
expression involving
4
involving antisense
4

Similar Publications

Homeobox protein MSX-1 restricts hepatitis B virus by promoting ubiquitin-independent proteasomal degradation of HBx protein.

PLoS Pathog

January 2025

Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.

Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.

View Article and Find Full Text PDF

Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species.

View Article and Find Full Text PDF

PRMT1-methylated MSX1 phase separates to control palate development.

Nat Commun

January 2025

State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.

Little is known about the regulation and function of phase separation in craniofacial developmental disorders. MSX1 mutations are associated with human cleft palate, the most common craniofacial birth defect. Here, we show that MSX1 phase separation is a vertebrate-conserved mechanism underlying embryonic palatal fusion.

View Article and Find Full Text PDF

Novel Gene Variants in Chinese Children with Non-Syndromic Tooth Agenesis: A Clinical and Genetic Analysis.

Children (Basel)

November 2024

Department of Stomatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.

Background: Tooth agenesis is the most frequently occurring genetic developmental anomaly in clinical dentistry. The gene, essential for tooth development, has been associated with non-syndromic tooth agenesis. This study aims to identify novel variants associated with this condition and to understand their impact on tooth development.

View Article and Find Full Text PDF

This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!