Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection.

Microbiology (Reading)

Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin 3, Campus UAM, 28049 Madrid, Spain.

Published: April 2009

Clinical isolates of Pseudomonas aeruginosa that hyperproduce a dark-brown pigment are quite often found in the lungs of chronically infected patients, suggesting that they may have an adaptive advantage in chronic infections. We have screened a library of random transposon insertions in P. aeruginosa. Transposon insertions resulting in the hyperproduction of a dark-brown pigment were found to be located in the hmgA gene, which putatively encodes the enzyme homogentisate-1,2-dioxygenase. Complementation studies indicate that hmgA disruption is responsible for the hyperproduction of pyomelanin in both laboratory and clinical isolates. A relationship between hmgA disruption and adaptation to chronic infection was explored and our results show that the inactivation of hmgA produces a slight reduction of killing ability in an acute murine model of lung infection. On the other hand, it also confers decreased clearance and increased persistence in chronic lung infections. Whether pyomelanin production is the cause of the increased adaptation to chronicity or just a side effect of hmgA inactivation is a question to be studied in future; however, this adaptation is consistent with the higher resistance to oxidative stress conferred in vitro by the pyomelanin pigment. Our results clearly demonstrate that hmgA inactivation leads to a better adaptation to chronic infection, and strongly suggest that this mechanism may be exploited in naturally occurring P. aeruginosa strains.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.024745-0DOI Listing

Publication Analysis

Top Keywords

inactivation hmga
8
hmga gene
8
pseudomonas aeruginosa
8
increased persistence
8
persistence chronic
8
chronic lung
8
lung infection
8
clinical isolates
8
dark-brown pigment
8
transposon insertions
8

Similar Publications

Background: The high mobility group A2 (HMGA2) gene is expressed extensively during early embryonic development but is inactivated in adulthood, and it is also reactivated in various benign and malignant tumors, including breast cancer. We first assessed the potential functional significance of the unstudied deletion polymorphism rs10573247 at the 3'UTR of HMGA2 on miRNA binding using bioinformatic tools, and subsequently, the association between this polymorphism and breast cancer susceptibility was investigated.

Materials And Methods: We applied the RNAhybrid tool to predict the functional effects of polymorphism rs10573247 located within the 3' UTR of the HMGA2 gene on miRNA binding.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) derived from human adipose mesenchymal stem cells (hADSCs) may exert a therapeutic benefit in alleviating sepsis-induced organ dysfunction by delivering cargos that include RNAs and proteins to target cells. The current study aims to explore the protective effect of miR-150-5p delivered by hADSC-EVs on sepsis-induced acute lung injury (ALI). We noted low expression of miR-150-5p in plasma and bronchoalveolar lavage fluid samples from patients with sepsis-induced ALI.

View Article and Find Full Text PDF

Inherited mutations affecting the SRCAP complex are central in moderate-penetrance predisposition to uterine leiomyomas.

Am J Hum Genet

March 2023

Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland. Electronic address:

Uterine leiomyomas (ULs) are benign smooth muscle tumors that are common in premenopausal women. Somatic alterations in MED12, HMGA2, FH, genes encoding subunits of the SRCAP complex, and genes involved in Cullin 3-RING E3 ligase neddylation are mutually exclusive UL drivers. Established predisposition genes explain only partially the estimated heritability of leiomyomas.

View Article and Find Full Text PDF

Silencing effects of mutant RAS signalling on transcriptomes.

Adv Biol Regul

January 2023

Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany. Electronic address:

Mutated genes of the RAS family encoding small GTP-binding proteins drive numerous cancers, including pancreatic, colon and lung tumors. Besides the numerous effects of mutant RAS gene expression on aberrant proliferation, transformed phenotypes, metabolism, and therapy resistance, the most striking consequences of chronic RAS activation are changes of the genetic program. By performing systematic gene expression studies in cellular models that allow comparisons of pre-neoplastic with RAS-transformed cells, we and others have estimated that 7 percent or more of all transcripts are altered in conjunction with the expression of the oncogene.

View Article and Find Full Text PDF

Our previous study confirmed that miR-219-5p inhibits the progression of ovarian cancer (OC) by targeting high mobility group AT-hook 2 (HMGA2), while the role of miR-219-5p on the chemoresistance of OC is unclear. HMGA2 and miR-219-5p expression in OC tumors and various types of OC cells were determined by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The miRNA profiles in A2780 and cisplatin-resistant A2780 cells were investigated via bulk miRNA sequencing, and the interactions of miR-219-5p and HMGA2 were determined by luciferase reporter activity assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!