CaMKII phosphorylation of the GABA(A) receptor: receptor subtype- and synapse-specific modulation.

J Physiol

Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.

Published: May 2009

As a major inhibitory neurotransmitter, GABA plays a vital role in the brain by controlling the extent of neuronal excitation. This widespread role is reflected by the ubiquitous distribution of GABA(A) receptors throughout the central nervous system. To regulate the level of neuronal inhibition requires some endogenous control over the release of GABA and/or its postsynaptic response. In this context, Ca(2+) ions are often used as primary or secondary messengers frequently resulting in the activation of protein kinases and phosphatases. One such kinase, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), can target the GABA(A) receptor to cause its phosphorylation. Evidence is now emerging, which is reviewed here, that GABA(A) receptors are indeed substrates for CaMKII and that this covalent modification alters the expression of cell surface receptors and their function. This type of regulation can also feature at inhibitory synapses leading to long-term inhibitory synaptic plasticity. Most recently, CaMKII has now been proposed to differentially phosphorylate particular isoforms of GABA(A) receptors in a synapse-specific context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697286PMC
http://dx.doi.org/10.1113/jphysiol.2009.171603DOI Listing

Publication Analysis

Top Keywords

gabaa receptors
12
gabaa receptor
8
gabaa
5
camkii
4
camkii phosphorylation
4
phosphorylation gabaa
4
receptor receptor
4
receptor subtype-
4
subtype- synapse-specific
4
synapse-specific modulation
4

Similar Publications

As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.

View Article and Find Full Text PDF

Therapeutic potential of rutin in premenstrual depression: evidence from and studies.

Front Pharmacol

January 2025

Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.

Introduction: Premenstrual dysphoric disorder (PMDD) is a cyclical mood disorder that severely affects the daily life of women of reproductive age. Most of the medications being used clinically have limitations such as low efficacy, side effects, and high cost, so there is an urgent need to discover safer and more effective medications. Rutin is a natural flavonol glycoside with various pharmacological properties including antidepressant.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABA receptor agonist, directly into the mPFC-GBM (1µg/rat/2.

View Article and Find Full Text PDF

Design, synthesis and structure-activity relationship of novel 1,2,4-triazolopyrimidin-5-one derivatives targeting GABA and Na1.2 with antiepileptic activity.

Eur J Med Chem

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing, 100050, China. Electronic address:

A novel class of 7-phenyl-[1,2,4]triazol-5(4H)-one derivatives was designed and synthesized, and their in vivo anticonvulsant activities were evaluated using subcutaneous pentylenetetrazole (Sc-PTZ) and maximal electroshock (MES) tests. Compounds 3u, 4f and 4k exhibited significant anticonvulsant activities in the Sc-PTZ model with ED values of 23.7, 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!