Crustacean hyperglycemic hormone (CHH) secreted from sinus glands primarily elicits hyperglycaemia in crustaceans. CHH is particularly important for energy metabolism during environmental and physiological stress as animals switch to anaerobiosis. CHH has been purified from multiple brachyuran crab species to date, but not from the cold water Tanner crab, Chionoecetes bairdi, a species found in Alaskan coastal waters. The purpose of molecular cloning the C. bairdi CHH precursor and identification of its neuropeptide form in sinus glands is to establish tools to further study cold water crab metabolic physiology. Cold water crabs such as those in the genus Chionoecetes are a good model for understanding the role that climate change and associated water temperature changes might have on metabolic physiology. CHHs in sinus glands of C. bairdi were purified using reverse-phase HPLC and were identified as CHH with an enzyme-linked immunosorbent assay (ELISA) using cross-reacting Callinectes sapidus and Carcinus maenas CHH antisera. The bioactivity of CHH was further assessed using a homologous assay by injecting CHH into eyestalk ablated C. bairdi and measuring subsequent rise in circulating glucose. The full length cDNA (1944bp) of C. bairdi CHH was determined by PCR using degenerate primers cloning and 5', 3' rapid amplification of cDNA ends (RACE). A phylogenetic analysis of deduced amino acid sequences from six brachyuran crab species showed C. bairdi CHH most closely related to the majid crab, Libinia emarginata (P55688). Future studies will enable us to compare metabolic physiology and requirements of cold water C. bairdi with the warm water crab C. sapidus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2009.03.012DOI Listing

Publication Analysis

Top Keywords

cold water
16
sinus glands
12
bairdi chh
12
metabolic physiology
12
chh
11
molecular cloning
8
crustacean hyperglycemic
8
hyperglycemic hormone
8
hormone chh
8
chh precursor
8

Similar Publications

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

This review emphasises the importance of the cardiovascular response to facial cooling (FC) and breath holding in both sexes. The trigemino-cardiac reflex, triggered by FC, reduces heart rate (HR) and constricts blood vessels. When combined with breath holding, this effect intensifies, enhancing the cardiodepressive impact.

View Article and Find Full Text PDF

The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.

View Article and Find Full Text PDF

Background: Cut flowers rapidly decline in quality and shorten their vase life after harvest. Various post-harvest methods are being sought to extend their vase life. This study investigated the effects of different storage environments and Streptomycin treatments on postharvest quality and vase life of gerbera flowers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!