The nuclear membrane has an important role for the dynamic regulation of the genome, besides the well-established cytoskeletal function. The nuclear lamina is emerging as an important player in the organization of the position and functional state of interphase chromosomes. Epigenetic modifications such as DNA methylation and histone modifications are required for genome reprogramming during development, tissue-specific gene expression and global gene silencing. The Methyl-CpG binding protein MeCP2 binds methyl-CpG dinucleotides in the mammalian genome and functions as a transcriptional repressor in vivo by interacting with Sin3A, thereby recruiting histone deacetylases (HDAC). MeCP2 also mediates the formation of higher-order chromatin structures contributing to determine the architectural organization of the nucleus. In this paper, we show that MeCP2 interacts in vitro and in vivo with the inner nuclear membrane protein LBR and that the unstructured aminoacidic sequence linking the MBD and TRD domains of MeCP2 is responsible for this association. The formation of an LBR-MeCP2 protein complex might help providing a molecular explanation to the distribution of part of the heterochromatin at the nuclear periphery linked to inner membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2009.01.019 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
Acetamide is a hepatocarcinogen in rats. We previously revealed that acetamide induces characteristic large micronuclei in rat liver, suggesting the possible involvement of chromosome aberrations in acetamide-induced hepatocarcinogenesis. To elucidate the mechanism of large micronuclei formation, in this study we examined time-dependent changes in rat hepatocytes after administration of acetamide.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFHuman exposure to arsenicals is associated with devastating diseases such as cancer and neurodegeneration. At the same time, arsenic-based drugs are used as therapeutic agents. The ability of arsenic to directly bind to proteins is correlated with its toxic and therapeutic effects highlighting the importance of elucidating arsenic-protein interactions.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!