BioSense is a US national system that uses data from health information systems for automated disease surveillance. We studied 4 time-series algorithm modifications designed to improve sensitivity for detecting artificially added data. To test these modified algorithms, we used reports of daily syndrome visits from 308 Department of Defense (DoD) facilities and 340 hospital emergency departments (EDs). At a constant alert rate of 1%, sensitivity was improved for both datasets by using a minimum standard deviation (SD) of 1.0, a 14-28 day baseline duration for calculating mean and SD, and an adjustment for total clinic visits as a surrogate denominator. Stratifying baseline days into weekdays versus weekends to account for day-of-week effects increased sensitivity for the DoD data but not for the ED data. These enhanced methods may increase sensitivity without increasing the alert rate and may improve the ability to detect outbreaks by using automated surveillance system data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671446PMC
http://dx.doi.org/10.3201/eid1504.080616DOI Listing

Publication Analysis

Top Keywords

system data
8
alert rate
8
data
5
enhancing time-series
4
time-series detection
4
detection algorithms
4
algorithms automated
4
automated biosurveillance
4
biosurveillance biosense
4
biosense national
4

Similar Publications

BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories.

J Chem Inf Model

January 2025

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.

View Article and Find Full Text PDF

Background: Verbal autopsy (VA) has been a crucial tool in ascertaining population-level cause of death (COD) estimates, specifically in countries where medical certification of COD is relatively limited. The World Health Organization has released an updated instrument (Verbal Autopsy Instrument 2022) that supports electronic data collection methods along with analytical software for assigning COD. This questionnaire encompasses the primary signs and symptoms associated with prevalent diseases across all age groups.

View Article and Find Full Text PDF

Evaluation of a Machine Learning-Guided Strategy for Elevated Lipoprotein(a) Screening in Health Systems.

Circ Genom Precis Med

January 2025

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (A.A., L.S.D., E.K.O., R.K.).

Background: While universal screening for Lp(a; lipoprotein[a]) is increasingly recommended, <0.5% of patients undergo Lp(a) testing. Here, we assessed the feasibility of deploying Algorithmic Risk Inspection for Screening Elevated Lp(a; ARISE), a validated machine learning tool, to health system electronic health records to increase the yield of Lp(a) testing.

View Article and Find Full Text PDF

While maternal mortality decreased during the Millennium Development Goals era, it remains unacceptably high, with stagnation in reductions possible due to shocks such as COVID-19. Most women in low- and middle-income countries already receive antenatal care and over half give birth in health facilities. In cities, use of health facilities for childbirth is near universal (>90%).

View Article and Find Full Text PDF

Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.

Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!