Background: It is increasingly recognized that Lactobacillus plantarum (L. plantarum) has the ability to protect against Enteropathogenic Escherichia coli (EPEC)-induced damage of the epithelial monolayer barrier function by preventing changes in host cell morphology, attaching/effacing (A/E) lesion formation, monolayer resistance, and macromolecular permeability. However, the cellular mechanism involved in this protective effect still remained to be clarified.
Methods: This study was to investigate the effect of L. plantarum on the changes of Caco-2 cells responding to Enteroinvasive Escherichia coli (EIEC), the permeability of cell monolayer and the transmissivity of dextran, and the distribution and expression of the tight junction (TJ) proteins, such as Claudin-1, Occludin, JAM-1 and ZO-1 were examined when infected with EIEC or adhesived of L. plantarum after infection by confocal laser scanning microscopy (CLSM), immunohistochemistry and Western blotting, the cytoskeleton protein F-actin were observed with FITC-phalloidin.
Results: This study demonstrated that the transepithelial electrical resistance (TER) step down and dextran integrated intensity (DII) step up with time after infected with EIEC, but after treating with L. plantarum, the changes of TER and DII were improved as compared with EIEC group. L. plantarum prevented the damage of expression and rearrangement of Claudin-1, Occludin, JAM-1 and ZO-1 proteins induced by EIEC, and could ameliorate the injury of cytoskeleton protein F-actin infected with EIEC.
Conclusion: L. plantarum exerted a protective effect against the damage to integrity of Caco-2 monolayer cells and the structure and distribution of TJ proteins by EIEC infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674056 | PMC |
http://dx.doi.org/10.1186/1471-2180-9-63 | DOI Listing |
Microorganisms
January 2025
Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
Oxidative stress caused by reactive oxygen species (ROS) affects the aging process and increases the likelihood of several diseases. A new frontier in its prevention includes bioactive foods and natural extracts that can be introduced by the diet in combination with specific probiotics. Among the natural compounds that we can introduce by the diet, extract is one of the most utilized since it contains a vast number of bioactive molecules such as phenolic acids, flavonoids, and polysaccharides that have been shown to possess antioxidant, anti-ageing, anti-cancer, and immunomodulatory activity.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Food Science and Technologies for Sustainable Agro-Food Chain (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, PC, Italy.
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .
View Article and Find Full Text PDFMicroorganisms
January 2025
Laboratory of Veterinary Pharmacokinetics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
Aquaculture has grown significantly, contributing to global food security and sustainability; however, intensified fish farming has increased disease susceptibility and antibiotic resistance. This study assessed the probiotic potential of PSCPL13 (hereafter, PSCPL13), isolated from the intestines of Japanese eels, for enhancing the health of olive flounder. After screening 16 isolates, PSCPL13 was selected because of its potential broad-spectrum antibacterial activity against many pathogens, such as and .
View Article and Find Full Text PDFMicroorganisms
December 2024
College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
This investigation aimed to assess the effect of additives on the aerobic stability, fermentation profile, and chemical composition of high-moisture corn grain silage. The corn grain was milled and divided this into four distinct treatment groups: , propionic acid, , and no additive (control). The capacity of the silos was 1 L and density was 1000 kg/m.
View Article and Find Full Text PDFMicroorganisms
December 2024
Jeonju AgroBio-Materials Institute (JAMI), Jeonju-si 54810, Republic of Korea.
This study evaluated the probiotic potential of lactic acid bacteria (LAB) isolated from fermented milk and soymilk products purchased from local markets. The LAB strains were assessed for acid and bile resistance, antibiotic resistance, and adhesion to human intestinal epithelial models. (JAMI_LB_02) and (JAMI_LB_05) showed the highest survival rates in artificial gastric and bile juices, at 87.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!