Background: Tumor cells need large energy and nucleic acids to proliferate and grow. For most of their energy needs, cancer cells depend more on glycolysis. For most of their nucleic acids needs, cancer cells depend more on the nonoxidative pathway of the pentose phosphate pathway. Transketolase(TKT) is a crucial enzyme in the nonoxidative pathway of the PPP.
Methods: The real-time quantity PCR was used to determine the expression of transketolase gene family in uterine cervix cancer. Transketolase activity of cell was determined by using enzyme-linked method. Cell proliferation was detected by using MTT.
Results: The TKTL1 mRNA was specifically over-expressed in uterine cervix cancer cells(HeLa cell line) compare with normal human endocervical epithelial cells(End1/E6E7 cell line)(P < 0.05), whereas the expression of TKT and transketolase-like gene 2(TKTL2) have no significant differences between the two cell lines(P > 0.05). Moreover, we found that total transketolase activity was significantly reduced, and cell proliferation was remarkably inhibited after anti-TKTL1 siRNA treatment in HeLa cells. The total transketolase activity and cell proliferation have no significant differences after anti-TKTL1 siRNA treatment in End1/E6E7 cells.
Conclusion: These results indicate that TKTL1 plays an important role in total transketolase activity and cells proliferation in uterine cervix cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669053 | PMC |
http://dx.doi.org/10.1186/1756-9966-28-43 | DOI Listing |
Epigenetics Chromatin
January 2025
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.
Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.
Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.
BMC Cancer
January 2025
Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.
Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.
BMC Cancer
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.
View Article and Find Full Text PDFBMC Cancer
January 2025
Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!