Thermochemical properties of a set of small boron (B(n)) and boron oxide (B(n)O(m)) clusters, with n = 1-4 and m = 0-3, their anions, and the B(4)(2-) dianion, were calculated by using coupled-cluster theory CCSD(T) calculations with the aug-cc-pVnZ (n = D, T, Q, 5) basis sets extrapolated to the complete basis set limit with additional corrections. Enthalpies of formation, bond dissociation energies, singlet-triplet or doublet-quartet separation gaps, adiabatic electron affinities (EA), and both vertical electron attachment and detachment energies were evaluated. The predicted heats of formation show agreement close to the error bars of the literature results for boron oxides with the largest error for OBO. Our calculated adiabatic EAs are in good agreement with recent experiments: B (calc, 0.26 eV; exptl, 0.28 eV), B(2) (1.95, 1.80), B(3) (2.88, 2.820 +/- 0.020), B(4) (1.68, 1.60 +/- 0.10), BO (2.50, 2.51), BO(2) (4.48, 4.51), BOB (0.07), B(2)O(2) (0.37), B(3)O (2.05), B(3)O(2) (2.94, 2.94), B(4)O (2.58), and B(4)O(2) (3.14, 3.160 +/- 0.015). The BO bond is strong, so this moiety is maintained in most of the clusters. Thermochemical parameters of clusters are not linearly additive with respect to the number of B atoms. The EA tends to be larger in the dioxides. The growth mechanism of small boron oxides should be determined by a number of factors: (i) formation of BO bonds, (ii) when possible, formation of a cyclic B(3) or B(4), and (iii) combination of a boron cycle and a BO bond. When these factors compete, the strength of the BO bonds tends to compensate the destabilization arising from a loss of binding in the cyclic boron clusters, in such a way that a linear boron oxide prevails. When the B(2) moiety is present in these linear clusters, the oxide derivatives prefer a high spin state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp811391v | DOI Listing |
Chemistry
January 2025
The University of Western Ontario, Department of Chemistry, 1151 Richmond St. N., N6A 5B7, London, CANADA.
The exploration of phosphorus-nitrogen heterocycles derived from chelating N-donor ligands is an area of research that has lagged behind the development of similar heterocycles based on other main group elements, most notably boron. The fact that phosphorus and nitrogen are both group 15 elements and that their compounds are most commonly viewed as Lewis bases likely contributes to this observation. However, through judicious ligand design and creative use of phosphorus sources that render phosphorus as Lewis acidic and/or electron poor, a variety of heterocyclic architectures are possible.
View Article and Find Full Text PDFmBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.
View Article and Find Full Text PDFSmall
January 2025
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!