Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The kidney's role in the pathogenesis of salt-induced hypertension remains unclear. However, it has been suggested that inherited morphological renal abnormalities may cause hypertension. We hypothesized that functional, not morphological, derangements in Dahl salt-sensitive rats' kidneys cause NaCl retention that leads to hypertension accompanied by renal pathologic changes and proteinuria.
Method: We studied hemodynamic, renal morphologic, and biochemical differences in Dahl salt-resistant and Dahl salt-sensitive rats fed low (0.05-0.23% NaCl) or elevated (1% NaCl) salt diets.
Results: We found similar hemodynamics, equal numbers of glomeruli, normal renal medullary interstitial cells and their osmiophilic granules, and cortical morphology in normotensive Dahl salt-resistant and Dahl salt-sensitive rats fed low dietary salt. Furthermore, aldosterone secretion, caused by angiotensin II infusion in normotensive rats fed 0.23% NaCl, was significantly less in Dahl salt-sensitive than Dahl salt-resistant rats. Increasing NaCl to 1% caused renal vasoconstriction without changing cyclic GMP excretion in Dahl salt-sensitive rats; in Dahl salt-resistant rats, cyclic GMP increased markedly and renal vascular resistance remained unchanged. On 1% NaCl for 9 months, Dahl salt-sensitive rats developed marked hypertension, severe renal vasoconstriction, glomerulosclerosis, tubulointerstitial abnormalities, and marked proteinuria; hypertension resulted from increased total peripheral resistance, as occurs in essential hypertensive humans. No hemodynamic or renal pathologic changes occurred in Dahl salt-resistant rats, and proteinuria was minimal.
Conclusion: We conclude that renal functional, not morphological, abnormalities cause salt sensitivity in Dahl rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/hjh.0b013e32831ffec7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!