Little is known about the organization of corticofugal projections controlling antagonistic jaw muscles. To address this issue, we employed retrograde (Fluorogold; FG) and anterograde (biotinylated dextran amine; BDA) tracing techniques in rats. Three groups of premotoneurons were identified by injecting FG into the jaw-closing (JC) and -opening (JO) subdivisions of the trigeminal motor nucleus (Vmo). These were 1) the intertrigeminal region (Vint) and principal trigeminal sensory nucleus for JC nucleus; 2) the reticular region medial to JO nucleus (RmJO) for JO nucleus; and 3) the parabrachial (Pb) and supratrigeminal (Vsup) nuclei, reticular regions medial and ventral to JC nucleus, rostrodorsomedial oralis (Vor), and juxtatrigeminal region (Vjuxt) containing a mixture of premotoneurons to both the nuclei. Subsequently, FG was injected into the representative premotoneuron structures. The JC and JO premotoneurons received main afferents from the lateral and medial agranular fields of motor cortex (Agl and Agm), respectively, whereas afferents to the nuclei with both JC and JO premotoneurons arose from Agl also and from primary somatosensory cortex (S1). Finally, BDA was injected into each of the three cortical areas representing the premotoneuron structures to complement the FG data. The Agl and Agm projected to reticular regions around the Vmo, whereas the Pb, Vsup, Vor, and Vjuxt received input from Agl. The S1 projected to the trigeminal sensory nuclei as well as to the Pb, Vsup, and Vjuxt. These results suggest that corticofugal projections to Vmo via premotoneuron structures consist of multiple pathways, which influence distinct patterns of jaw movements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.22013DOI Listing

Publication Analysis

Top Keywords

corticofugal projections
12
premotoneuron structures
12
antagonistic jaw
8
jaw muscles
8
trigeminal sensory
8
reticular regions
8
agl agm
8
nucleus
6
trigeminal
4
projections trigeminal
4

Similar Publications

During recovery following spinal cord injury in the macaque, the sensorimotor cortex on the same side as the injury (ipsilesional, unaffected) becomes activated and plays a role in guiding movements of the affected hand. Effective regulation of these movements by the ipsilesional sensorimotor cortex would depend not only on its ability to send motor commands directly to target muscles but also on coordinated functioning with higher-level motor planning systems such as the cortico-basal ganglia and cortico-cerebellar loops. In this study, using anterograde viral tracers, we analyzed the axonal trajectories of corticofugal fibers from the contralesional (affected) primary motor cortex (M1) at the brainstem level in two macaque monkeys with sub-hemisection spinal cord injury at the mid-cervical level.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis represents corticomotoneuronal system failure.

Muscle Nerve

November 2024

Neuroscience Research Australia, Sydney, New South Wales, Australia.

Several decades have passed since the anterograde corticomotoneuronal hypothesis for amyotrophic lateral sclerosis (ALS) was proposed. The intervening years have witnessed its emergent support based on anatomical, pathological, physiological, neuroimaging, and molecular biological studies. The evolution of an extensive corticomotoneuronal system appears restricted to the human species, with ALS representing a uniquely human disease.

View Article and Find Full Text PDF

Layer 5 extratelencephalic (ET) neurons are present across neocortical areas and send axons to multiple subcortical targets. Two cardinal subtypes exist: (1) Slco2a1-expressing neurons (ET), which predominate in the motor cortex and project distally to the pons, medulla and spinal cord; and (2) Nprs1- or Hpgd-expressing neurons (ET), which predominate in the visual cortex and project more proximally to the pons and thalamus. An understanding of how area-specific ET and ET emerge during development is important because they are critical for fine motor skills and are susceptible to spinal cord injury and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Adaptation of the layer V supraspinal motor corticofugal projections from the primary (M1) and premotor (PM) cortices after CNS motor disorders in non-human primates: A survey.

Transl Neurosci

January 2024

Department of Neurosciences and Movement sciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Ch. du Musée 5, CH-1700 Fribourg, Switzerland.

Motor commands are transmitted from the motor cortical areas to effectors mostly via the corticospinal (CS) projection. Several subcortical motor nuclei also play an important role in motor control, the subthalamic nucleus, the red nucleus, the reticular nucleus and the superior colliculus. These nuclei are influenced by motor cortical areas via respective corticofugal projections, which undergo complex adaptations after motor trauma (spinal cord/motor cortex injury) or motor disease (Parkinson), both in the absence or presence of putative treatments, as observed in adult macaque monkeys.

View Article and Find Full Text PDF

Although recent studies in nonhuman primates have provided evidence that transcranial magnetic stimulation (TMS) activates cells within the reticular formation, it remains unclear whether descending brain stem projections contribute to the generation of TMS-induced motor evoked potentials (MEPs) in skeletal muscles. We compared MEPs in muscles with extensive direct corticomotoneuronal input (first dorsal interosseous) versus a prominent role in postural control (gastrocnemius) to determine whether the amplitudes of early and late MEPs were differentially modulated by cortical suppression. Suprathreshold TMS was applied with and without a preceding suprathreshold TMS pulse at two interstimulus intervals (50 and 80 ms).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!