Elevated expression of p130(Cas)/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130(Cas) signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM-R cells, which were established by long-term exposure of estrogen (E(2))-dependent MCF-7 cells to tamoxifen, displayed elevated levels of total and activated p130(Cas). Here we have investigated the effects of p130(Cas) inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130(Cas), a phosphorylated substrate domain of p130(Cas), that acts as a dominant-negative (DN) p130(Cas) molecule by blocking signal transduction downstream of the p130(Cas) substrate domain, as well as knockdown by siRNA was employed. Interference with p130(Cas) signaling/expression induced morphological changes, which were consistent with a more epithelial-like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3-kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti-apoptotic protein Bcl-2. Importantly, these changes re-sensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743319 | PMC |
http://dx.doi.org/10.1002/jcb.22136 | DOI Listing |
Chem Sci
January 2025
Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.
View Article and Find Full Text PDFOpt Express
December 2024
In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada.
The beauty of tulips has enchanted mankind for centuries. The striped variety has attracted particular attention for its intricate and unpredictable patterns. A good understanding of the mechanism driving the striped pattern formation of broken tulips has been missing since the 17th century.
View Article and Find Full Text PDFIn the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!