The pel1 mutation in Saccharomyces cerevisiae and the Cgpgs1Delta mutation in Candida glabrata result in deficiency of mitochondrial phosphatidylglycerolphosphate synthase and lack of two anionic phospholipids, phosphatidylglycerol and cardiolipin. DNA sequence analysis of the PCR-amplified pel1 mutant allele revealed that the pel1 mutation resulted from a single amino-acid substitution (Glu(463)Lys) in the C-terminal part of encoded enzyme. The CgPGS1 gene cloned in a centromeric pFL38 vector functionally complemented the pel1 mutation in S. cerevisiae. Likewise, the ScPGS1 gene cloned in pCgACU5 plasmid fully complemented the Cgpgs1Delta mutation in C. glabrata. This mutation increased the cell surface hydrophobicity and decreased biofilm formation. These results support a close evolutionary relatedness of S. cerevisiae and C. glabrata and point to the relationship between expression of virulence factors and anionic phospholipid deficiency in pathogenic C. glabrata.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-009-0005-xDOI Listing

Publication Analysis

Top Keywords

pel1 mutation
12
anionic phospholipid
8
phospholipid deficiency
8
cgpgs1delta mutation
8
gene cloned
8
mutation
6
molecular phenotypic
4
phenotypic analysis
4
analysis mutations
4
mutations causing
4

Similar Publications

mRNA surveillance complex PELOTA-HBS1 regulates phosphoinositide-dependent protein kinase1 and plant growth.

Plant Physiol

August 2021

Joint Centre for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.

The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-phosphoinositide-dependent protein kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.

View Article and Find Full Text PDF

A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency.

Appl Microbiol Biotechnol

July 2019

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.

Cold-active enzymes have become attractive biocatalysts in biotechnological applications for their ability to retain high catalytic activity below 30 °C, which allows energy reduction and cost saving. Here, a 1041 bp gene pel1 encoding a 34.7 KDa pectate lyase was cloned from a facultatively psychrophilic Antarctic bacterium Massilia eurypsychrophila and heterologously expressed in Escherichia coli.

View Article and Find Full Text PDF

Bacterial canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. The pectolytic enzymes produced by phytobacteria are important virulence factors involved in tissue maceration, electrolyte loss and cell death of host plants.

View Article and Find Full Text PDF

The pel1 mutation in Saccharomyces cerevisiae and the Cgpgs1Delta mutation in Candida glabrata result in deficiency of mitochondrial phosphatidylglycerolphosphate synthase and lack of two anionic phospholipids, phosphatidylglycerol and cardiolipin. DNA sequence analysis of the PCR-amplified pel1 mutant allele revealed that the pel1 mutation resulted from a single amino-acid substitution (Glu(463)Lys) in the C-terminal part of encoded enzyme. The CgPGS1 gene cloned in a centromeric pFL38 vector functionally complemented the pel1 mutation in S.

View Article and Find Full Text PDF

ABCG11/WBC11, an ATP binding cassette (ABC) transporter from Arabidopsis thaliana, is a key component of the export pathway for cuticular lipids. Arabidopsis wbc11 T-DNA insertional knock-out mutants exhibited lipidic inclusions inside epidermal cells similar to the previously characterized wax transporter mutant cer5, with a similar strong reduction in the alkanes of surface waxes. Moreover, the wbc11 knock-out mutants also showed defects not present in cer5, including post-genital organ fusions, stunted growth and a reduction in cutin load on the plant surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!