Study on the physical properties of tissue-engineered blood vessels made by chemical cross-linking and polymer-tissue cross-linking.

J Artif Organs

Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, Japan.

Published: July 2009

In this study, we attempted to chemically cross-link decellularized blood vessel tissue and to perform cross-linking with a polymer in order to control its stability and functionalization. For this purpose, we cross-linked tissue by intrahelical, interhelical, and intermolecular cross-linking between the polymer and the collagen helix, which is a component of the native tissue. The intrahelically cross-linked tissue showed weaker stability against heat and degradation caused by collagenase compared to the interhelically cross-linked tissue. The tissue intermolecularly cross-linked with polymer showed the highest stability against heat and degradation caused by collagenase. The mechanical strength test showed that the Young's moduli were different for the intra/interhelically and intermolecularly cross-linked tissues, with the latter being stiffer. This is thought to be because the cross-linked polymer functions in the same way as elastin, whereas simple collagen cross-linking provides a supportive matrix that holds the collagen and elastin together.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10047-008-0443-2DOI Listing

Publication Analysis

Top Keywords

cross-linked tissue
12
cross-linking polymer
8
stability heat
8
heat degradation
8
degradation caused
8
caused collagenase
8
intermolecularly cross-linked
8
cross-linked polymer
8
tissue
6
cross-linked
6

Similar Publications

Amniotic epithelial stem cells (AEC) hold potential for tissue regeneration, especially through their conditioned medium (AEC-CM) due to their immunomodulatory and regenerative effects. Nevertheless, advanced drug delivery systems such as hydrogels are needed to enable clinical applications. Herein, an gellable hyaluronic acid and polyethylene glycol-based iEDDA-cross-linked hydrogel was developed for the encapsulation and controlled release of AEC-CM.

View Article and Find Full Text PDF

Cross-linking bonds adjacent polymer chains into a three-dimensional network. Cross-linked poly(vinyl alcohol) (PVA) turns into a hydrogel, insoluble structure exhibiting outstanding sorption properties. As an electrospinnable polymer, PVA enables the creation of nanofibrous hydrogels resembling biological tissues, thus ideal for nature-inspired platforms.

View Article and Find Full Text PDF

Oxygenous and biofilm-targeted nanosonosensitizer anchored with Pt nanozyme and antimicrobial peptide in the gelatin/sodium alginate hydrogel for infected diabetic wound healing.

Int J Biol Macromol

December 2024

Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China. Electronic address:

Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high HO microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer.

View Article and Find Full Text PDF

Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!