Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-009-1328-7 | DOI Listing |
Genome Res
January 2025
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
Sex chromosomes can expand through fusion with autosomes, thereby acquiring unique evolutionary patterns. In butterflies and moths (Lepidoptera), these sex chromosome-autosome (SA) fusions occur relatively frequently, suggesting possible evolutionary advantages. Here, we investigated how SA fusion affects chromosome features and molecular evolution in leafroller moths (Lepidoptera: Tortricidae).
View Article and Find Full Text PDFCommun Biol
December 2024
McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
Nearly all animals exhibit a preferred period of daily activity (diel-niche), strongly influenced by the light environment. Vision is a sensory system that is strongly adapted to light, and evolutionary transitions to novel light environments can impose strong constraints on eye evolution, color, and motion vision. While the genetic and neural basis of visual adaptation are well-studied in a few model systems, our understanding across the tree of life remains incomplete.
View Article and Find Full Text PDFSci Data
December 2024
Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Butterflies serve as key indicators of climate change impacts such as shifts in emergence timing and shifts in geographic range and distribution. However, the development of commonly used ecological forecasts based on butterfly physiological tolerance of temperature change has lagged behind that of other taxonomic groups. Here, we provide a series of related datasets comprising butterfly thermal physiological traits to enable such forecasts.
View Article and Find Full Text PDFBiol Lett
December 2024
Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
Recent reports of insect decline have raised concerns regarding population responses of ecologically important groups, such as insect pollinators. Additionally, how population trends vary across pollinator taxonomic groups and degree of specialization is unclear. Here, we analyse 14 years of abundance data (2009-2022) for 38 species of native insect pollinators, including a range of Coleoptera, Lepidoptera and Hymenoptera specialists and generalists from the tropical rainforest of Barro Colorado Island, Panama.
View Article and Find Full Text PDFUrban wastelands are among the most neglected urban habitats. Our study demonstrated that those spatially restricted patches of vegetation are an important refuge for various species of butterflies. We have assessed the diversity, distribution patterns, and seasonal changes of butterfly communities based on two-year (2019-2020), quantitative studies at 5 urban wastelands in a large post-industrial city in Central Poland.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!