Abscisic acid (ABA) is a phytohormone regulating important functions in higher plants, notably responses to abiotic stress. Recently, chemical or physical stimulation of human granulocytes was shown to induce production and release of endogenous ABA, which activates specific cell functions. Here we provide evidence that ABA stimulates several functional activities of the murine microglial cell line N9 (NO and tumor necrosis factor-alpha production, cell migration) through the second messenger cyclic ADP-ribose and an increase of intracellular calcium. ABA production and release occur in N9 cells stimulated with bacterial lipopolysaccharide, phorbol myristate acetate, the chemoattractant peptide f-MLP, or beta-amyloid, the primary plaque component in Alzheimer disease. Finally, ABA priming stimulates N9 cell migration toward beta-amyloid. These results indicate that ABA is a pro-inflammatory hormone inducing autocrine microglial activation, potentially representing a new target for anti-inflammatory therapies aimed at limiting microglia-induced tissue damage in the central nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685659 | PMC |
http://dx.doi.org/10.1074/jbc.M802604200 | DOI Listing |
Sci Rep
January 2025
Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan. Electronic address:
Plant responses to the water environment are mediated by ethylene (submergence response) and abscisic acid (ABA, drought response). Ethylene is perceived by a family of histidine kinase receptors (ETR-HKs), which regulate the activity of the downstream B3 Raf-like (RAF) kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) in an ethylene-dependent manner. We previously demonstrated in the moss Physcomitrium patens that SNF1-related protein kinase 2 (SnRK2), an essential kinase in osmostress responses in land plants, is activated by the B3-RAF kinase ARK, which is also regulated by ETR-HKs in an ABA- and osmostress-dependent manner.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Applied Biosciences, Kyungpook National University, 41566, Daegu, Republic of Korea. Electronic address:
Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Semmelweis Egyetem, Általános Orvostudományi Kar, Városmajori Szív- és Érgyógyászati Klinika, Kísérletes Kardiológiai és Sebészeti Műtéttani Tanszék Budapest, Nagyvárad tér 4., 1089 Magyarország.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!