A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling genomic data with type attributes, balancing stability and maintainability. | LitMetric

Modeling genomic data with type attributes, balancing stability and maintainability.

BMC Bioinformatics

System Engineering und Informationsmanagement, Fachhochschule Stralsund, Stralsund, Germany.

Published: March 2009

Background: Molecular biology (MB) is a dynamic research domain that benefits greatly from the use of modern software technology in preparing experiments, analyzing acquired data, and even performing "in-silico" analyses. As ever new findings change the face of this domain, software for MB has to be sufficiently flexible to accommodate these changes. At the same time, however, the efficient development of high-quality and interoperable software requires a stable model of concepts for the subject domain and their relations. The result of these two contradictory requirements is increased complexity in the development of MB software.A common means to reduce complexity is to consider only a small part of the domain, instead of the domain as a whole. As a result, small, specialized programs develop their own domain understanding. They often use one of the numerous data formats or implement proprietary data models. This makes it difficult to incorporate the results of different programs, which is needed by many users in order to work with the software efficiently. The data conversions required to achieve interoperability involve more than just type conversion. Usually they also require complex data mappings and lead to a loss of information.

Results: To address these problems, we have developed a flexible computer model for the MB domain that supports both changeability and interoperability. This model describes concepts of MB in a formal manner and provides a comprehensive view on it. In this model, we adapted the design pattern "Dynamic Object Model" by using meta data and association classes.A small, highly abstract class model, named "operational model," defines the scope of the software system. An object model, named "knowledge model," describes concrete concepts of the MB domain. The structure of the knowledge model is described by a meta model. We proved our model to be stable, flexible, and useful by implementing a prototype of an MB software framework based on the proposed model.

Conclusion: Stability and flexibility of the domain model is achieved by its separation into two model parts, the operational model and the knowledge model. These parts are connected by the meta model of the knowledge model to the whole domain model. This approach makes it possible to comply with the requirements of interoperability and flexibility in MB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676260PMC
http://dx.doi.org/10.1186/1471-2105-10-97DOI Listing

Publication Analysis

Top Keywords

model
16
knowledge model
12
domain
10
model domain
8
model named
8
meta model
8
domain model
8
model parts
8
model knowledge
8
data
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!